Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076884345> ?p ?o ?g. }
- W2076884345 endingPage "577" @default.
- W2076884345 startingPage "571" @default.
- W2076884345 abstract "Objective: Injuries among pedestrians are a major public health concern in Colombian cities such as Cali. This is one of the first studies in Latin America to apply Bayesian maximum entropy (BME) methods to visualize and produce fine-scale, highly accurate estimates of citywide pedestrian fatalities. The purpose of this study is to determine the BME method that best estimates pedestrian mortality rates and reduces statistical noise. We further utilized BME methods to identify and differentiate spatial patterns and persistent versus transient pedestrian mortality hotspots.Methods: In this multiyear study, geocoded pedestrian mortality data from the Cali Injury Surveillance System (2008 to 2010) and census data were utilized to accurately visualize and estimate pedestrian fatalities. We investigated the effects of temporal and spatial scales, addressing issues arising from the rarity of pedestrian fatality events using 3 BME methods (simple kriging, Poisson kriging, and uniform model Bayesian maximum entropy). To reduce statistical noise while retaining a fine spatial and temporal scale, data were aggregated over 9-month incidence periods and censal sectors. Based on a cross-validation of BME methods, Poisson kriging was selected as the best BME method. Finally, the spatiotemporal and urban built environment characteristics of Cali pedestrian mortality hotspots were linked to intervention measures provided in Mead et al.'s (2014) pedestrian mortality review.Results: The BME space–time analysis in Cali resulted in maps displaying hotspots of high pedestrian fatalities extending over small areas with radii of 0.25 to 1.1 km and temporal durations of 1 month to 3 years. Mapping the spatiotemporal distribution of pedestrian mortality rates identified high-priority areas for prevention strategies. The BME results allow us to identify possible intervention strategies according to the persistence and built environment of the hotspot; for example, through enforcement or long-term environmental modifications.Conclusions: BME methods provide useful information on the time and place of injuries and can inform policy strategies by isolating priority areas for interventions, contributing to intervention evaluation, and helping to generate hypotheses and identify the preventative strategies that may be suitable to those areas (e.g., street-level methods: pedestrian crossings, enforcement interventions; or citywide approaches: limiting vehicle speeds). This specific information is highly relevant for public health interventions because it provides the ability to target precise locations." @default.
- W2076884345 created "2016-06-24" @default.
- W2076884345 creator A5026845334 @default.
- W2076884345 creator A5031745550 @default.
- W2076884345 creator A5049031617 @default.
- W2076884345 creator A5050953655 @default.
- W2076884345 creator A5054756290 @default.
- W2076884345 creator A5063172018 @default.
- W2076884345 creator A5063225225 @default.
- W2076884345 creator A5088611214 @default.
- W2076884345 date "2014-12-31" @default.
- W2076884345 modified "2023-10-16" @default.
- W2076884345 title "Spatiotemporal Approaches to Analyzing Pedestrian Fatalities: The Case of Cali, Colombia" @default.
- W2076884345 cites W147555659 @default.
- W2076884345 cites W1487545974 @default.
- W2076884345 cites W1537886467 @default.
- W2076884345 cites W1590281652 @default.
- W2076884345 cites W1966338475 @default.
- W2076884345 cites W1966839738 @default.
- W2076884345 cites W1977378632 @default.
- W2076884345 cites W1977470776 @default.
- W2076884345 cites W1977638146 @default.
- W2076884345 cites W1979377913 @default.
- W2076884345 cites W1983835937 @default.
- W2076884345 cites W1990915963 @default.
- W2076884345 cites W1996743169 @default.
- W2076884345 cites W2014893466 @default.
- W2076884345 cites W2034905479 @default.
- W2076884345 cites W2047812471 @default.
- W2076884345 cites W2052762517 @default.
- W2076884345 cites W2054036439 @default.
- W2076884345 cites W2068645462 @default.
- W2076884345 cites W2078061637 @default.
- W2076884345 cites W2096387433 @default.
- W2076884345 cites W2097146281 @default.
- W2076884345 cites W2107399237 @default.
- W2076884345 cites W2110634923 @default.
- W2076884345 cites W2115818050 @default.
- W2076884345 cites W2117860126 @default.
- W2076884345 cites W2121393166 @default.
- W2076884345 cites W2129111045 @default.
- W2076884345 cites W2135875708 @default.
- W2076884345 cites W2155671444 @default.
- W2076884345 cites W2156537900 @default.
- W2076884345 cites W2167510939 @default.
- W2076884345 cites W2170189756 @default.
- W2076884345 cites W2170577368 @default.
- W2076884345 doi "https://doi.org/10.1080/15389588.2014.976336" @default.
- W2076884345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25551356" @default.
- W2076884345 hasPublicationYear "2014" @default.
- W2076884345 type Work @default.
- W2076884345 sameAs 2076884345 @default.
- W2076884345 citedByCount "23" @default.
- W2076884345 countsByYear W20768843452015 @default.
- W2076884345 countsByYear W20768843452017 @default.
- W2076884345 countsByYear W20768843452018 @default.
- W2076884345 countsByYear W20768843452019 @default.
- W2076884345 countsByYear W20768843452020 @default.
- W2076884345 countsByYear W20768843452021 @default.
- W2076884345 countsByYear W20768843452022 @default.
- W2076884345 countsByYear W20768843452023 @default.
- W2076884345 crossrefType "journal-article" @default.
- W2076884345 hasAuthorship W2076884345A5026845334 @default.
- W2076884345 hasAuthorship W2076884345A5031745550 @default.
- W2076884345 hasAuthorship W2076884345A5049031617 @default.
- W2076884345 hasAuthorship W2076884345A5050953655 @default.
- W2076884345 hasAuthorship W2076884345A5054756290 @default.
- W2076884345 hasAuthorship W2076884345A5063172018 @default.
- W2076884345 hasAuthorship W2076884345A5063225225 @default.
- W2076884345 hasAuthorship W2076884345A5088611214 @default.
- W2076884345 hasConcept C100906024 @default.
- W2076884345 hasConcept C105795698 @default.
- W2076884345 hasConcept C166957645 @default.
- W2076884345 hasConcept C205649164 @default.
- W2076884345 hasConcept C2777113093 @default.
- W2076884345 hasConcept C3017944768 @default.
- W2076884345 hasConcept C33923547 @default.
- W2076884345 hasConcept C41008148 @default.
- W2076884345 hasConcept C42629822 @default.
- W2076884345 hasConcept C58640448 @default.
- W2076884345 hasConcept C71924100 @default.
- W2076884345 hasConcept C81692654 @default.
- W2076884345 hasConcept C99454951 @default.
- W2076884345 hasConceptScore W2076884345C100906024 @default.
- W2076884345 hasConceptScore W2076884345C105795698 @default.
- W2076884345 hasConceptScore W2076884345C166957645 @default.
- W2076884345 hasConceptScore W2076884345C205649164 @default.
- W2076884345 hasConceptScore W2076884345C2777113093 @default.
- W2076884345 hasConceptScore W2076884345C3017944768 @default.
- W2076884345 hasConceptScore W2076884345C33923547 @default.
- W2076884345 hasConceptScore W2076884345C41008148 @default.
- W2076884345 hasConceptScore W2076884345C42629822 @default.
- W2076884345 hasConceptScore W2076884345C58640448 @default.
- W2076884345 hasConceptScore W2076884345C71924100 @default.
- W2076884345 hasConceptScore W2076884345C81692654 @default.
- W2076884345 hasConceptScore W2076884345C99454951 @default.
- W2076884345 hasIssue "6" @default.
- W2076884345 hasLocation W20768843451 @default.