Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076886572> ?p ?o ?g. }
- W2076886572 endingPage "1662" @default.
- W2076886572 startingPage "1649" @default.
- W2076886572 abstract "Biomarker identification and cancer classification are two closely related problems. In gene expression data sets, the correlation between genes can be high when they share the same biological pathway. Moreover, the gene expression data sets may contain outliers due to either chemical or electrical reasons. A good gene selection method should take group effects into account and be robust to outliers. In this paper, we propose a Laplace naive Bayes model with mean shrinkage (LNB-MS). The Laplace distribution instead of the normal distribution is used as the conditional distribution of the samples for the reasons that it is less sensitive to outliers and has been applied in many fields. The key technique is the L1 penalty imposed on the mean of each class to achieve automatic feature selection. The objective function of the proposed model is a piecewise linear function with respect to the mean of each class, of which the optimal value can be evaluated at the breakpoints simply. An efficient algorithm is designed to estimate the parameters in the model. A new strategy that uses the number of selected features to control the regularization parameter is introduced. Experimental results on simulated data sets and 17 publicly available cancer data sets attest to the accuracy, sparsity, efficiency, and robustness of the proposed algorithm. Many biomarkers identified with our method have been verified in biochemical or biomedical research. The analysis of biological and functional correlation of the genes based on Gene Ontology (GO) terms shows that the proposed method guarantees the selection of highly correlated genes simultaneously" @default.
- W2076886572 created "2016-06-24" @default.
- W2076886572 creator A5022154207 @default.
- W2076886572 creator A5031082473 @default.
- W2076886572 creator A5078281046 @default.
- W2076886572 creator A5080609124 @default.
- W2076886572 creator A5088518917 @default.
- W2076886572 date "2012-11-01" @default.
- W2076886572 modified "2023-10-17" @default.
- W2076886572 title "Biomarker Identification and Cancer Classification Based on Microarray Data Using Laplace Naive Bayes Model with Mean Shrinkage" @default.
- W2076886572 cites W1660176836 @default.
- W2076886572 cites W1727290854 @default.
- W2076886572 cites W1966681180 @default.
- W2076886572 cites W1966701961 @default.
- W2076886572 cites W1977145914 @default.
- W2076886572 cites W1986384344 @default.
- W2076886572 cites W1988078905 @default.
- W2076886572 cites W1991008210 @default.
- W2076886572 cites W1992291725 @default.
- W2076886572 cites W1993201227 @default.
- W2076886572 cites W2003496812 @default.
- W2076886572 cites W2005539942 @default.
- W2076886572 cites W2009163635 @default.
- W2076886572 cites W2022736043 @default.
- W2076886572 cites W2032980774 @default.
- W2076886572 cites W2035935472 @default.
- W2076886572 cites W2042995932 @default.
- W2076886572 cites W2059687940 @default.
- W2076886572 cites W2061528463 @default.
- W2076886572 cites W2061795506 @default.
- W2076886572 cites W2064208261 @default.
- W2076886572 cites W2087684630 @default.
- W2076886572 cites W2088851040 @default.
- W2076886572 cites W2096837030 @default.
- W2076886572 cites W2097413644 @default.
- W2076886572 cites W2101820646 @default.
- W2076886572 cites W2103017472 @default.
- W2076886572 cites W2103291381 @default.
- W2076886572 cites W2104653669 @default.
- W2076886572 cites W2105437322 @default.
- W2076886572 cites W2108710077 @default.
- W2076886572 cites W2109363337 @default.
- W2076886572 cites W2113962581 @default.
- W2076886572 cites W2118872355 @default.
- W2076886572 cites W2119387367 @default.
- W2076886572 cites W2122825543 @default.
- W2076886572 cites W2126520642 @default.
- W2076886572 cites W2129018774 @default.
- W2076886572 cites W2130696395 @default.
- W2076886572 cites W2135637472 @default.
- W2076886572 cites W2137317896 @default.
- W2076886572 cites W2138019504 @default.
- W2076886572 cites W2138218344 @default.
- W2076886572 cites W2140550177 @default.
- W2076886572 cites W2147246240 @default.
- W2076886572 cites W2151041330 @default.
- W2076886572 cites W2152734820 @default.
- W2076886572 cites W2153098260 @default.
- W2076886572 cites W2159400887 @default.
- W2076886572 cites W2160727916 @default.
- W2076886572 cites W2165432359 @default.
- W2076886572 cites W2166574880 @default.
- W2076886572 cites W2171118759 @default.
- W2076886572 cites W41409100 @default.
- W2076886572 cites W4243195610 @default.
- W2076886572 cites W4246697467 @default.
- W2076886572 doi "https://doi.org/10.1109/tcbb.2012.105" @default.
- W2076886572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22868679" @default.
- W2076886572 hasPublicationYear "2012" @default.
- W2076886572 type Work @default.
- W2076886572 sameAs 2076886572 @default.
- W2076886572 citedByCount "45" @default.
- W2076886572 countsByYear W20768865722013 @default.
- W2076886572 countsByYear W20768865722014 @default.
- W2076886572 countsByYear W20768865722015 @default.
- W2076886572 countsByYear W20768865722016 @default.
- W2076886572 countsByYear W20768865722017 @default.
- W2076886572 countsByYear W20768865722018 @default.
- W2076886572 countsByYear W20768865722019 @default.
- W2076886572 countsByYear W20768865722020 @default.
- W2076886572 countsByYear W20768865722021 @default.
- W2076886572 countsByYear W20768865722022 @default.
- W2076886572 countsByYear W20768865722023 @default.
- W2076886572 crossrefType "journal-article" @default.
- W2076886572 hasAuthorship W2076886572A5022154207 @default.
- W2076886572 hasAuthorship W2076886572A5031082473 @default.
- W2076886572 hasAuthorship W2076886572A5078281046 @default.
- W2076886572 hasAuthorship W2076886572A5080609124 @default.
- W2076886572 hasAuthorship W2076886572A5088518917 @default.
- W2076886572 hasConcept C104317684 @default.
- W2076886572 hasConcept C107673813 @default.
- W2076886572 hasConcept C12267149 @default.
- W2076886572 hasConcept C124101348 @default.
- W2076886572 hasConcept C124535831 @default.
- W2076886572 hasConcept C148483581 @default.
- W2076886572 hasConcept C153180895 @default.
- W2076886572 hasConcept C154945302 @default.
- W2076886572 hasConcept C207201462 @default.