Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076892018> ?p ?o ?g. }
- W2076892018 endingPage "4581" @default.
- W2076892018 startingPage "4567" @default.
- W2076892018 abstract "Large number of people are affected by Diabetes Mellitus (DM) which is difficult to cure due to its chronic nature and genetic link. The uncontrolled diabetes may lead to heart related problems. Therefore, the diagnosis and monitoring of diabetes is of great importance. The automatic detection of diabetes can be performed using RR-interval signals. The RR-interval signals are nonlinear and non-stationary in nature. Hence linear methods may not be able to capture the hidden information present in the signal. In this paper, a new nonlinear method based on empirical mode decomposition (EMD) is proposed to discriminate between diabetic and normal RR-interval signals. The mean frequency parameter using Fourier–Bessel series expansion (MFFB) and the two bandwidth parameters namely, amplitude modulation bandwidth (BAM) and frequency modulation bandwidth (BFM) extracted from the intrinsic mode functions (IMFs) obtained from the EMD of RR-interval signals are used to discriminate the two groups. Unique representations such as analytic signal representation (ASR) and second order difference plot (SODP) for IMFs of RR-interval signals are also proposed to differentiate the two groups. The area parameters are computed from ASR and SODP of IMFs of RR-interval signals. Area computed from these representation as area corresponding to the 95% central tendency measure (CTM) of ASR of IMFs (AASR) and 95% confidence ellipse area of SODP of IMF (ASODP) are also proposed to discriminate diabetic and normal RR-interval signals. Overall, five features are extracted from IMFs of RR-interval signals namely MFFB,BAM,BFM,AASR and ASODP. Kruskal–Wallis statistical test is used to measure the discrimination ability of the proposed features for detection of diabetic RR-interval signals. Results obtained from proposed methodology indicate that these features provide the statistically significant difference between diabetic and normal classes." @default.
- W2076892018 created "2016-06-24" @default.
- W2076892018 creator A5000506396 @default.
- W2076892018 creator A5030314469 @default.
- W2076892018 creator A5060520833 @default.
- W2076892018 creator A5069265808 @default.
- W2076892018 creator A5074179735 @default.
- W2076892018 date "2015-06-01" @default.
- W2076892018 modified "2023-10-16" @default.
- W2076892018 title "Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals" @default.
- W2076892018 cites W1510833811 @default.
- W2076892018 cites W1520722002 @default.
- W2076892018 cites W1949884442 @default.
- W2076892018 cites W1963751422 @default.
- W2076892018 cites W1967866350 @default.
- W2076892018 cites W1969616767 @default.
- W2076892018 cites W1976724965 @default.
- W2076892018 cites W1983112265 @default.
- W2076892018 cites W1984802288 @default.
- W2076892018 cites W1990441178 @default.
- W2076892018 cites W2001612033 @default.
- W2076892018 cites W2003911602 @default.
- W2076892018 cites W2004432465 @default.
- W2076892018 cites W2007221293 @default.
- W2076892018 cites W2009787667 @default.
- W2076892018 cites W2012547202 @default.
- W2076892018 cites W2015409124 @default.
- W2076892018 cites W2017603933 @default.
- W2076892018 cites W2024073050 @default.
- W2076892018 cites W2024177262 @default.
- W2076892018 cites W2025056501 @default.
- W2076892018 cites W2026666095 @default.
- W2076892018 cites W2028791472 @default.
- W2076892018 cites W2033424828 @default.
- W2076892018 cites W2033991357 @default.
- W2076892018 cites W2037500757 @default.
- W2076892018 cites W2039242523 @default.
- W2076892018 cites W2058362346 @default.
- W2076892018 cites W2058836306 @default.
- W2076892018 cites W2065343005 @default.
- W2076892018 cites W2071341607 @default.
- W2076892018 cites W2077640225 @default.
- W2076892018 cites W2079791971 @default.
- W2076892018 cites W2080462706 @default.
- W2076892018 cites W2101708014 @default.
- W2076892018 cites W2102255706 @default.
- W2076892018 cites W2110834910 @default.
- W2076892018 cites W2116273758 @default.
- W2076892018 cites W2116570678 @default.
- W2076892018 cites W2119639777 @default.
- W2076892018 cites W2123774421 @default.
- W2076892018 cites W2128264222 @default.
- W2076892018 cites W2138554597 @default.
- W2076892018 cites W2139625233 @default.
- W2076892018 cites W2139923324 @default.
- W2076892018 cites W2147663252 @default.
- W2076892018 cites W2148314286 @default.
- W2076892018 cites W2154877864 @default.
- W2076892018 cites W2155850922 @default.
- W2076892018 cites W2160924754 @default.
- W2076892018 cites W2162273778 @default.
- W2076892018 cites W2176579932 @default.
- W2076892018 cites W2260395597 @default.
- W2076892018 cites W2313824304 @default.
- W2076892018 cites W2409177342 @default.
- W2076892018 doi "https://doi.org/10.1016/j.eswa.2015.01.051" @default.
- W2076892018 hasPublicationYear "2015" @default.
- W2076892018 type Work @default.
- W2076892018 sameAs 2076892018 @default.
- W2076892018 citedByCount "75" @default.
- W2076892018 countsByYear W20768920182015 @default.
- W2076892018 countsByYear W20768920182016 @default.
- W2076892018 countsByYear W20768920182017 @default.
- W2076892018 countsByYear W20768920182018 @default.
- W2076892018 countsByYear W20768920182019 @default.
- W2076892018 countsByYear W20768920182020 @default.
- W2076892018 countsByYear W20768920182021 @default.
- W2076892018 countsByYear W20768920182022 @default.
- W2076892018 countsByYear W20768920182023 @default.
- W2076892018 crossrefType "journal-article" @default.
- W2076892018 hasAuthorship W2076892018A5000506396 @default.
- W2076892018 hasAuthorship W2076892018A5030314469 @default.
- W2076892018 hasAuthorship W2076892018A5060520833 @default.
- W2076892018 hasAuthorship W2076892018A5069265808 @default.
- W2076892018 hasAuthorship W2076892018A5074179735 @default.
- W2076892018 hasConcept C105795698 @default.
- W2076892018 hasConcept C112633086 @default.
- W2076892018 hasConcept C114614502 @default.
- W2076892018 hasConcept C11930861 @default.
- W2076892018 hasConcept C153180895 @default.
- W2076892018 hasConcept C154945302 @default.
- W2076892018 hasConcept C199360897 @default.
- W2076892018 hasConcept C25570617 @default.
- W2076892018 hasConcept C2776257435 @default.
- W2076892018 hasConcept C2778067643 @default.
- W2076892018 hasConcept C2779843651 @default.
- W2076892018 hasConcept C33923547 @default.
- W2076892018 hasConcept C41008148 @default.