Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076914374> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2076914374 abstract "The automatic vibration monitoring methods of gears and gearboxes due to their extensive applications in industry are improving. Hence, their vibration signal and its derived features, has been an interesting topic for researchers in this field. On the other hand, optimizing the number of vibration signal features used in the detection and diagnosis process is crucial for increasing the fault detection speed of automatic condition monitoring systems. In this paper, a system based on multiple layer perceptron artificial neural networks (MLP ANNs) is designed to diagnose different types of fault in a gearbox. Using a feature selection method, the system is optimized through eliminating unimportant features of vibration signals. This method is based on a simple and fast sensitivity evaluation process, which results in a considerable estimation, despite its simplicity. Consequently, the system’s speed increases, while the classification error decreases or remains constant in some other cases. An experimental test rig data set is used to verify the effectiveness and accuracy of the mentioned method. Four different types of data which are generated through the test rig setup are: no fault condition, 5% fault (5% eroded tooth) gear, 20% eroded tooth gear and the broken tooth gear. The results verify that eliminating some input features of gear vibration signal, using this method, will increase the accuracy and detection speed of gear fault diagnosis methods. The improved systems with fewer input features and higher precision, facilitates the development of online automatic condition monitoring systems." @default.
- W2076914374 created "2016-06-24" @default.
- W2076914374 creator A5019812440 @default.
- W2076914374 creator A5037720208 @default.
- W2076914374 creator A5051192937 @default.
- W2076914374 creator A5088082677 @default.
- W2076914374 date "2010-01-01" @default.
- W2076914374 modified "2023-09-24" @default.
- W2076914374 title "Improving Performance of an Artificial Neural Network Based Gearbox Fault Diagnosis System" @default.
- W2076914374 cites W1980545827 @default.
- W2076914374 cites W2008598341 @default.
- W2076914374 cites W2009045532 @default.
- W2076914374 cites W2014065015 @default.
- W2076914374 cites W2042193040 @default.
- W2076914374 cites W2082132924 @default.
- W2076914374 cites W2092092164 @default.
- W2076914374 cites W2157354484 @default.
- W2076914374 doi "https://doi.org/10.1115/esda2010-25087" @default.
- W2076914374 hasPublicationYear "2010" @default.
- W2076914374 type Work @default.
- W2076914374 sameAs 2076914374 @default.
- W2076914374 citedByCount "0" @default.
- W2076914374 crossrefType "proceedings-article" @default.
- W2076914374 hasAuthorship W2076914374A5019812440 @default.
- W2076914374 hasAuthorship W2076914374A5037720208 @default.
- W2076914374 hasAuthorship W2076914374A5051192937 @default.
- W2076914374 hasAuthorship W2076914374A5088082677 @default.
- W2076914374 hasConcept C111919701 @default.
- W2076914374 hasConcept C119599485 @default.
- W2076914374 hasConcept C121332964 @default.
- W2076914374 hasConcept C127313418 @default.
- W2076914374 hasConcept C127413603 @default.
- W2076914374 hasConcept C133731056 @default.
- W2076914374 hasConcept C152745839 @default.
- W2076914374 hasConcept C153180895 @default.
- W2076914374 hasConcept C154945302 @default.
- W2076914374 hasConcept C165205528 @default.
- W2076914374 hasConcept C172707124 @default.
- W2076914374 hasConcept C175551986 @default.
- W2076914374 hasConcept C198394728 @default.
- W2076914374 hasConcept C199360897 @default.
- W2076914374 hasConcept C21200559 @default.
- W2076914374 hasConcept C24326235 @default.
- W2076914374 hasConcept C24890656 @default.
- W2076914374 hasConcept C2775846686 @default.
- W2076914374 hasConcept C2779843651 @default.
- W2076914374 hasConcept C41008148 @default.
- W2076914374 hasConcept C50644808 @default.
- W2076914374 hasConcept C60908668 @default.
- W2076914374 hasConcept C98045186 @default.
- W2076914374 hasConceptScore W2076914374C111919701 @default.
- W2076914374 hasConceptScore W2076914374C119599485 @default.
- W2076914374 hasConceptScore W2076914374C121332964 @default.
- W2076914374 hasConceptScore W2076914374C127313418 @default.
- W2076914374 hasConceptScore W2076914374C127413603 @default.
- W2076914374 hasConceptScore W2076914374C133731056 @default.
- W2076914374 hasConceptScore W2076914374C152745839 @default.
- W2076914374 hasConceptScore W2076914374C153180895 @default.
- W2076914374 hasConceptScore W2076914374C154945302 @default.
- W2076914374 hasConceptScore W2076914374C165205528 @default.
- W2076914374 hasConceptScore W2076914374C172707124 @default.
- W2076914374 hasConceptScore W2076914374C175551986 @default.
- W2076914374 hasConceptScore W2076914374C198394728 @default.
- W2076914374 hasConceptScore W2076914374C199360897 @default.
- W2076914374 hasConceptScore W2076914374C21200559 @default.
- W2076914374 hasConceptScore W2076914374C24326235 @default.
- W2076914374 hasConceptScore W2076914374C24890656 @default.
- W2076914374 hasConceptScore W2076914374C2775846686 @default.
- W2076914374 hasConceptScore W2076914374C2779843651 @default.
- W2076914374 hasConceptScore W2076914374C41008148 @default.
- W2076914374 hasConceptScore W2076914374C50644808 @default.
- W2076914374 hasConceptScore W2076914374C60908668 @default.
- W2076914374 hasConceptScore W2076914374C98045186 @default.
- W2076914374 hasLocation W20769143741 @default.
- W2076914374 hasOpenAccess W2076914374 @default.
- W2076914374 hasPrimaryLocation W20769143741 @default.
- W2076914374 hasRelatedWork W163231026 @default.
- W2076914374 hasRelatedWork W1968095372 @default.
- W2076914374 hasRelatedWork W1987543709 @default.
- W2076914374 hasRelatedWork W1990196040 @default.
- W2076914374 hasRelatedWork W2030537237 @default.
- W2076914374 hasRelatedWork W2081374524 @default.
- W2076914374 hasRelatedWork W2115053615 @default.
- W2076914374 hasRelatedWork W2128515713 @default.
- W2076914374 hasRelatedWork W2404050753 @default.
- W2076914374 hasRelatedWork W2528317516 @default.
- W2076914374 hasRelatedWork W2545692105 @default.
- W2076914374 hasRelatedWork W2547599619 @default.
- W2076914374 hasRelatedWork W2884418807 @default.
- W2076914374 hasRelatedWork W2904080934 @default.
- W2076914374 hasRelatedWork W2984156874 @default.
- W2076914374 hasRelatedWork W3000399793 @default.
- W2076914374 hasRelatedWork W3002578465 @default.
- W2076914374 hasRelatedWork W3026153217 @default.
- W2076914374 hasRelatedWork W2827198121 @default.
- W2076914374 hasRelatedWork W2958065054 @default.
- W2076914374 isParatext "false" @default.
- W2076914374 isRetracted "false" @default.
- W2076914374 magId "2076914374" @default.
- W2076914374 workType "article" @default.