Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076973919> ?p ?o ?g. }
- W2076973919 endingPage "3305" @default.
- W2076973919 startingPage "3291" @default.
- W2076973919 abstract "Land-cover studies based on optical remote sensing in regions which exhibit disorderly urban growth and quick-use conversion of farmland to non-farm usage face problems due to inaccurate discrimination of cover types and hence inaccurate extent estimations. The use of data in the visible and infrared areas of the electromagnetic spectrum for classifying crop types has been extensively explored, concluding that data acquisitions must be made during critical crop development periods. This raises a concern in Central Mexico where such periods coincide with important cloud coverage and where good estimates of the extent of agricultural areas and of particular crops are keenly sought by government agencies for planning purposes. Due to the interest in accurate and updated maps for this area, repeated studies have been carried out over a number of years by the National Institute of Research for Forestry, Agriculture and Livestock for the Ministry of Agriculture of Mexico. Taking into consideration the difficulties of acquiring and analysing data derived from optical sensors, the objective of this study was to assess the advantages of combining synthetic aperture radar (SAR) and optical remote sensing in producing more accurate maps. The study area covers 15 634 ha and is located in Central Mexico in a region where agricultural plots of varied sizes and forms are interspersed with rapid urbanization spaces. We investigated alternative supervised classification schemes combining the Radarsat-1 C-band with Landsat Enhanced Thematic Mapper Plus (ETM+) bands to estimate land cover distributions and assess the quality of results with field data. Then, we set forth and evaluated a methodology which applies data fusion of selected Landsat ETM+ bands and the C-radar band. The separation and similarities for vegetated and non-vegetated cover types depends on whether the selected agricultural crops are annual or perennial, and on whether there are bare soils present. This knowledge for the particular study area influenced the selection of dates for image take and analysis. Partial fused and non-fused land-cover maps were assessed for accuracy and were combined to obtain a final map. The results demonstrate that the combined utilization of optical and radar imagery yields useful land cover information and improved classification accuracy over those obtained using either type of image on its own." @default.
- W2076973919 created "2016-06-24" @default.
- W2076973919 creator A5034491510 @default.
- W2076973919 creator A5075729628 @default.
- W2076973919 creator A5090278580 @default.
- W2076973919 date "2010-06-20" @default.
- W2076973919 modified "2023-10-16" @default.
- W2076973919 title "Land-cover classification using radar and optical images: a case study in Central Mexico" @default.
- W2076973919 cites W1569662687 @default.
- W2076973919 cites W2003111780 @default.
- W2076973919 cites W2004201407 @default.
- W2076973919 cites W2009164151 @default.
- W2076973919 cites W2012611723 @default.
- W2076973919 cites W2047060267 @default.
- W2076973919 cites W2057535374 @default.
- W2076973919 cites W2079464129 @default.
- W2076973919 cites W2082508451 @default.
- W2076973919 cites W2083875210 @default.
- W2076973919 cites W2104763670 @default.
- W2076973919 cites W2105090634 @default.
- W2076973919 cites W2113098133 @default.
- W2076973919 cites W2114939821 @default.
- W2076973919 cites W2121348175 @default.
- W2076973919 cites W2133761398 @default.
- W2076973919 cites W2138973222 @default.
- W2076973919 cites W2166808775 @default.
- W2076973919 cites W2168740944 @default.
- W2076973919 cites W2170127735 @default.
- W2076973919 doi "https://doi.org/10.1080/01431160903160777" @default.
- W2076973919 hasPublicationYear "2010" @default.
- W2076973919 type Work @default.
- W2076973919 sameAs 2076973919 @default.
- W2076973919 citedByCount "32" @default.
- W2076973919 countsByYear W20769739192012 @default.
- W2076973919 countsByYear W20769739192014 @default.
- W2076973919 countsByYear W20769739192015 @default.
- W2076973919 countsByYear W20769739192016 @default.
- W2076973919 countsByYear W20769739192017 @default.
- W2076973919 countsByYear W20769739192018 @default.
- W2076973919 countsByYear W20769739192019 @default.
- W2076973919 countsByYear W20769739192020 @default.
- W2076973919 countsByYear W20769739192021 @default.
- W2076973919 countsByYear W20769739192022 @default.
- W2076973919 countsByYear W20769739192023 @default.
- W2076973919 crossrefType "journal-article" @default.
- W2076973919 hasAuthorship W2076973919A5034491510 @default.
- W2076973919 hasAuthorship W2076973919A5075729628 @default.
- W2076973919 hasAuthorship W2076973919A5090278580 @default.
- W2076973919 hasConcept C118518473 @default.
- W2076973919 hasConcept C127413603 @default.
- W2076973919 hasConcept C147176958 @default.
- W2076973919 hasConcept C162324750 @default.
- W2076973919 hasConcept C166957645 @default.
- W2076973919 hasConcept C205649164 @default.
- W2076973919 hasConcept C2775938548 @default.
- W2076973919 hasConcept C2778102629 @default.
- W2076973919 hasConcept C2780648208 @default.
- W2076973919 hasConcept C39432304 @default.
- W2076973919 hasConcept C39853841 @default.
- W2076973919 hasConcept C41008148 @default.
- W2076973919 hasConcept C4792198 @default.
- W2076973919 hasConcept C50522688 @default.
- W2076973919 hasConcept C554190296 @default.
- W2076973919 hasConcept C62649853 @default.
- W2076973919 hasConcept C76155785 @default.
- W2076973919 hasConceptScore W2076973919C118518473 @default.
- W2076973919 hasConceptScore W2076973919C127413603 @default.
- W2076973919 hasConceptScore W2076973919C147176958 @default.
- W2076973919 hasConceptScore W2076973919C162324750 @default.
- W2076973919 hasConceptScore W2076973919C166957645 @default.
- W2076973919 hasConceptScore W2076973919C205649164 @default.
- W2076973919 hasConceptScore W2076973919C2775938548 @default.
- W2076973919 hasConceptScore W2076973919C2778102629 @default.
- W2076973919 hasConceptScore W2076973919C2780648208 @default.
- W2076973919 hasConceptScore W2076973919C39432304 @default.
- W2076973919 hasConceptScore W2076973919C39853841 @default.
- W2076973919 hasConceptScore W2076973919C41008148 @default.
- W2076973919 hasConceptScore W2076973919C4792198 @default.
- W2076973919 hasConceptScore W2076973919C50522688 @default.
- W2076973919 hasConceptScore W2076973919C554190296 @default.
- W2076973919 hasConceptScore W2076973919C62649853 @default.
- W2076973919 hasConceptScore W2076973919C76155785 @default.
- W2076973919 hasIssue "12" @default.
- W2076973919 hasLocation W20769739191 @default.
- W2076973919 hasOpenAccess W2076973919 @default.
- W2076973919 hasPrimaryLocation W20769739191 @default.
- W2076973919 hasRelatedWork W1525714507 @default.
- W2076973919 hasRelatedWork W1554149449 @default.
- W2076973919 hasRelatedWork W2353707061 @default.
- W2076973919 hasRelatedWork W2385071428 @default.
- W2076973919 hasRelatedWork W2388631344 @default.
- W2076973919 hasRelatedWork W2789792726 @default.
- W2076973919 hasRelatedWork W2790520697 @default.
- W2076973919 hasRelatedWork W2961165696 @default.
- W2076973919 hasRelatedWork W3086971283 @default.
- W2076973919 hasRelatedWork W3170890391 @default.
- W2076973919 hasVolume "31" @default.
- W2076973919 isParatext "false" @default.