Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076987240> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2076987240 endingPage "422" @default.
- W2076987240 startingPage "421" @default.
- W2076987240 abstract "The rapid approaching of elderly era has caused the impending needs for applying new technology for elderly and disabled people to improve health conditions and increase the quality of life. Under such a situation, novel bioengineering devices and tools are being developed to gain better understanding of human metabolic, anatomy and functions of organs. On the other hand, chronic diseases cause healthcare to be shared by daily health maintenance, triggering the impending need for intelligence of devices in which preliminary decisions need to be built into the system for providing preliminary recommendations. To achieve the development of novel and intelligent bioengineering and healthcare devices, the techniques of multidimensional signal and image processing and analysis can play one of the major roles. Compared with one dimensional signal analysis, the analysis of multidimensional signals and images provides more information. On the other hand, the high dimensionality of data may also cause large computational cost and, therefore, reduce the feasibility. Consequently, how to extract information for best estimation of health situations from the correlated or uncorrelated signals needs to be addressed. The goal of this special issue is to provide most up-to-date and recent advances of multidimensional signal and image analysis techniques for healthcare applications. This special issue serves as a forum and venue for researchers in academia, clinics and industries working in this area to share their experiences with the readers. For this special issue, we received a total of 13 submissions, each of which has gone through rigorous peer review. Based on the review results, six papers are selected for publication in this special issue, with brief description as follows. In “Enhancement of Blood Vessels in Retinal Imaging Using the Nonsubsampled Contourlet Transform”, Lee et al. propose a modified version of the nonsubsampled" @default.
- W2076987240 created "2016-06-24" @default.
- W2076987240 creator A5000003226 @default.
- W2076987240 creator A5091032119 @default.
- W2076987240 date "2012-05-04" @default.
- W2076987240 modified "2023-10-18" @default.
- W2076987240 title "Special issue on “Multidimensional Signal and Image Analysis on HealthCare Applications”" @default.
- W2076987240 doi "https://doi.org/10.1007/s11045-012-0187-2" @default.
- W2076987240 hasPublicationYear "2012" @default.
- W2076987240 type Work @default.
- W2076987240 sameAs 2076987240 @default.
- W2076987240 citedByCount "0" @default.
- W2076987240 crossrefType "journal-article" @default.
- W2076987240 hasAuthorship W2076987240A5000003226 @default.
- W2076987240 hasAuthorship W2076987240A5091032119 @default.
- W2076987240 hasBestOaLocation W20769872401 @default.
- W2076987240 hasConcept C115961682 @default.
- W2076987240 hasConcept C153180895 @default.
- W2076987240 hasConcept C154945302 @default.
- W2076987240 hasConcept C160735492 @default.
- W2076987240 hasConcept C17744445 @default.
- W2076987240 hasConcept C199360897 @default.
- W2076987240 hasConcept C199539241 @default.
- W2076987240 hasConcept C2522767166 @default.
- W2076987240 hasConcept C2779843651 @default.
- W2076987240 hasConcept C31972630 @default.
- W2076987240 hasConcept C41008148 @default.
- W2076987240 hasConceptScore W2076987240C115961682 @default.
- W2076987240 hasConceptScore W2076987240C153180895 @default.
- W2076987240 hasConceptScore W2076987240C154945302 @default.
- W2076987240 hasConceptScore W2076987240C160735492 @default.
- W2076987240 hasConceptScore W2076987240C17744445 @default.
- W2076987240 hasConceptScore W2076987240C199360897 @default.
- W2076987240 hasConceptScore W2076987240C199539241 @default.
- W2076987240 hasConceptScore W2076987240C2522767166 @default.
- W2076987240 hasConceptScore W2076987240C2779843651 @default.
- W2076987240 hasConceptScore W2076987240C31972630 @default.
- W2076987240 hasConceptScore W2076987240C41008148 @default.
- W2076987240 hasIssue "4" @default.
- W2076987240 hasLocation W20769872401 @default.
- W2076987240 hasOpenAccess W2076987240 @default.
- W2076987240 hasPrimaryLocation W20769872401 @default.
- W2076987240 hasRelatedWork W1891287906 @default.
- W2076987240 hasRelatedWork W1969923398 @default.
- W2076987240 hasRelatedWork W2036807459 @default.
- W2076987240 hasRelatedWork W2130228941 @default.
- W2076987240 hasRelatedWork W2161229648 @default.
- W2076987240 hasRelatedWork W2166024367 @default.
- W2076987240 hasRelatedWork W2755342338 @default.
- W2076987240 hasRelatedWork W2772917594 @default.
- W2076987240 hasRelatedWork W2775347418 @default.
- W2076987240 hasRelatedWork W2993674027 @default.
- W2076987240 hasVolume "23" @default.
- W2076987240 isParatext "false" @default.
- W2076987240 isRetracted "false" @default.
- W2076987240 magId "2076987240" @default.
- W2076987240 workType "article" @default.