Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077044530> ?p ?o ?g. }
- W2077044530 endingPage "10" @default.
- W2077044530 startingPage "1" @default.
- W2077044530 abstract "This paper presents the best artificial neural network (ANN) model for the estimation of the convective heat transfer coefficient (HTC) of nanofluids flowing through a circular tube with various wall conditions under different flow regimes. The parameters of the ANN model are adjusted by the back propagation learning algorithm using wide ranges of experimental datasets. The developed ANN model shows mean square error (MSE) of 1.7 × 10− 5, absolute average relative deviation, percent (AARD%) of 2.41 and regression coefficient (R2) of 0.99966 in modeling of overall experimental datasets of convective HTC. The predictive performance of the proposed approach is compared with some reliable correlations which have been proposed in various literatures. The superior performance of the proposed model with respect to other published works has been found through the comparison of results." @default.
- W2077044530 created "2016-06-24" @default.
- W2077044530 creator A5023485935 @default.
- W2077044530 creator A5031981533 @default.
- W2077044530 creator A5045770642 @default.
- W2077044530 creator A5049549083 @default.
- W2077044530 date "2014-11-01" @default.
- W2077044530 modified "2023-10-17" @default.
- W2077044530 title "Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes" @default.
- W2077044530 cites W1963809411 @default.
- W2077044530 cites W1971735090 @default.
- W2077044530 cites W1971867153 @default.
- W2077044530 cites W1974014039 @default.
- W2077044530 cites W1976421928 @default.
- W2077044530 cites W1978626680 @default.
- W2077044530 cites W1980104991 @default.
- W2077044530 cites W1981623227 @default.
- W2077044530 cites W1985877704 @default.
- W2077044530 cites W1990526778 @default.
- W2077044530 cites W1991200210 @default.
- W2077044530 cites W1992810092 @default.
- W2077044530 cites W1994088545 @default.
- W2077044530 cites W2002728487 @default.
- W2077044530 cites W2005838927 @default.
- W2077044530 cites W2009336601 @default.
- W2077044530 cites W2013999446 @default.
- W2077044530 cites W2016213857 @default.
- W2077044530 cites W2018258856 @default.
- W2077044530 cites W2022475406 @default.
- W2077044530 cites W2027750441 @default.
- W2077044530 cites W2029374115 @default.
- W2077044530 cites W2033448214 @default.
- W2077044530 cites W2035773644 @default.
- W2077044530 cites W2041794483 @default.
- W2077044530 cites W2047086765 @default.
- W2077044530 cites W2049162408 @default.
- W2077044530 cites W2050924747 @default.
- W2077044530 cites W2051623369 @default.
- W2077044530 cites W2051751760 @default.
- W2077044530 cites W2054720888 @default.
- W2077044530 cites W2062900844 @default.
- W2077044530 cites W2070349493 @default.
- W2077044530 cites W2071577452 @default.
- W2077044530 cites W2072773743 @default.
- W2077044530 cites W2082130431 @default.
- W2077044530 cites W2087535204 @default.
- W2077044530 cites W2091752796 @default.
- W2077044530 cites W2101927907 @default.
- W2077044530 cites W2103496339 @default.
- W2077044530 cites W2122795128 @default.
- W2077044530 cites W2129560575 @default.
- W2077044530 cites W2134616821 @default.
- W2077044530 cites W2137983211 @default.
- W2077044530 cites W2144417044 @default.
- W2077044530 cites W2145085734 @default.
- W2077044530 cites W2147202728 @default.
- W2077044530 cites W2149723649 @default.
- W2077044530 cites W2149886645 @default.
- W2077044530 cites W2156894267 @default.
- W2077044530 cites W2169228003 @default.
- W2077044530 cites W2190952933 @default.
- W2077044530 cites W2460951279 @default.
- W2077044530 doi "https://doi.org/10.1016/j.powtec.2014.06.062" @default.
- W2077044530 hasPublicationYear "2014" @default.
- W2077044530 type Work @default.
- W2077044530 sameAs 2077044530 @default.
- W2077044530 citedByCount "92" @default.
- W2077044530 countsByYear W20770445302015 @default.
- W2077044530 countsByYear W20770445302016 @default.
- W2077044530 countsByYear W20770445302017 @default.
- W2077044530 countsByYear W20770445302018 @default.
- W2077044530 countsByYear W20770445302019 @default.
- W2077044530 countsByYear W20770445302020 @default.
- W2077044530 countsByYear W20770445302021 @default.
- W2077044530 countsByYear W20770445302022 @default.
- W2077044530 countsByYear W20770445302023 @default.
- W2077044530 crossrefType "journal-article" @default.
- W2077044530 hasAuthorship W2077044530A5023485935 @default.
- W2077044530 hasAuthorship W2077044530A5031981533 @default.
- W2077044530 hasAuthorship W2077044530A5045770642 @default.
- W2077044530 hasAuthorship W2077044530A5049549083 @default.
- W2077044530 hasConcept C105795698 @default.
- W2077044530 hasConcept C120934525 @default.
- W2077044530 hasConcept C121332964 @default.
- W2077044530 hasConcept C122383733 @default.
- W2077044530 hasConcept C128990827 @default.
- W2077044530 hasConcept C139945424 @default.
- W2077044530 hasConcept C154945302 @default.
- W2077044530 hasConcept C204530211 @default.
- W2077044530 hasConcept C21946209 @default.
- W2077044530 hasConcept C2780092901 @default.
- W2077044530 hasConcept C29700514 @default.
- W2077044530 hasConcept C33923547 @default.
- W2077044530 hasConcept C38349280 @default.
- W2077044530 hasConcept C41008148 @default.
- W2077044530 hasConcept C50517652 @default.
- W2077044530 hasConcept C50644808 @default.
- W2077044530 hasConcept C57879066 @default.