Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077056987> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2077056987 endingPage "427" @default.
- W2077056987 startingPage "418" @default.
- W2077056987 abstract "This study proposes an improved particle filter by incorporating semi-supervised machine learning for location estimation in mobile sensor networks (MSNs). A time-varying prior model is learned online as the likelihood of particle filter in order to adapt to dynamic characteristics of state and observation. Thanks to semi-supervised learning, the proposed particle filter can improve efficiency and accuracy, where the amount of available labelled training data is limited. The authors compare the proposed algorithm with the particle filter based on supervised learning. The algorithms are evaluated for received signal strength indicator (RSSI)-based distributed location estimation for MSN in which communication bandwidth and accuracy of the range measurement are limited. First, experimental results show that the semi-supervised algorithm can learn suddenly-changed RSSI characteristics while the supervised learning cannot. Second, the proposed particle filter is more accurate and robust against variations of the environment such as new obstacle configurations. Furthermore, the suggested particle filter shows low statistical variability during repeated experiments, confirmed by much smaller error deviation than the compared particle filter." @default.
- W2077056987 created "2016-06-24" @default.
- W2077056987 creator A5043249527 @default.
- W2077056987 creator A5052404844 @default.
- W2077056987 creator A5055716467 @default.
- W2077056987 date "2015-02-01" @default.
- W2077056987 modified "2023-09-24" @default.
- W2077056987 title "Distributed estimation using online semi‐supervised particle filter for mobile sensor networks" @default.
- W2077056987 cites W1479807131 @default.
- W2077056987 cites W1493007304 @default.
- W2077056987 cites W1496317909 @default.
- W2077056987 cites W1540155273 @default.
- W2077056987 cites W2000536232 @default.
- W2077056987 cites W2013798816 @default.
- W2077056987 cites W2033351162 @default.
- W2077056987 cites W2053943711 @default.
- W2077056987 cites W2054692776 @default.
- W2077056987 cites W2071370957 @default.
- W2077056987 cites W2082542916 @default.
- W2077056987 cites W2084361420 @default.
- W2077056987 cites W2098263691 @default.
- W2077056987 cites W2098854771 @default.
- W2077056987 cites W2113971713 @default.
- W2077056987 cites W2114059007 @default.
- W2077056987 cites W2115139357 @default.
- W2077056987 cites W2125052758 @default.
- W2077056987 cites W2126541755 @default.
- W2077056987 cites W2139212933 @default.
- W2077056987 cites W2148442627 @default.
- W2077056987 cites W2153344006 @default.
- W2077056987 cites W2159826786 @default.
- W2077056987 cites W2160337655 @default.
- W2077056987 cites W2160497694 @default.
- W2077056987 cites W2168452204 @default.
- W2077056987 cites W2168463792 @default.
- W2077056987 cites W2169329579 @default.
- W2077056987 cites W2547952601 @default.
- W2077056987 cites W4233647833 @default.
- W2077056987 cites W4376453470 @default.
- W2077056987 doi "https://doi.org/10.1049/iet-cta.2014.0495" @default.
- W2077056987 hasPublicationYear "2015" @default.
- W2077056987 type Work @default.
- W2077056987 sameAs 2077056987 @default.
- W2077056987 citedByCount "18" @default.
- W2077056987 countsByYear W20770569872015 @default.
- W2077056987 countsByYear W20770569872016 @default.
- W2077056987 countsByYear W20770569872017 @default.
- W2077056987 countsByYear W20770569872018 @default.
- W2077056987 countsByYear W20770569872019 @default.
- W2077056987 countsByYear W20770569872021 @default.
- W2077056987 countsByYear W20770569872022 @default.
- W2077056987 countsByYear W20770569872023 @default.
- W2077056987 crossrefType "journal-article" @default.
- W2077056987 hasAuthorship W2077056987A5043249527 @default.
- W2077056987 hasAuthorship W2077056987A5052404844 @default.
- W2077056987 hasAuthorship W2077056987A5055716467 @default.
- W2077056987 hasBestOaLocation W20770569871 @default.
- W2077056987 hasConcept C106131492 @default.
- W2077056987 hasConcept C119857082 @default.
- W2077056987 hasConcept C136389625 @default.
- W2077056987 hasConcept C154945302 @default.
- W2077056987 hasConcept C31972630 @default.
- W2077056987 hasConcept C41008148 @default.
- W2077056987 hasConcept C50644808 @default.
- W2077056987 hasConcept C52421305 @default.
- W2077056987 hasConceptScore W2077056987C106131492 @default.
- W2077056987 hasConceptScore W2077056987C119857082 @default.
- W2077056987 hasConceptScore W2077056987C136389625 @default.
- W2077056987 hasConceptScore W2077056987C154945302 @default.
- W2077056987 hasConceptScore W2077056987C31972630 @default.
- W2077056987 hasConceptScore W2077056987C41008148 @default.
- W2077056987 hasConceptScore W2077056987C50644808 @default.
- W2077056987 hasConceptScore W2077056987C52421305 @default.
- W2077056987 hasIssue "3" @default.
- W2077056987 hasLocation W20770569871 @default.
- W2077056987 hasOpenAccess W2077056987 @default.
- W2077056987 hasPrimaryLocation W20770569871 @default.
- W2077056987 hasRelatedWork W2981850339 @default.
- W2077056987 hasRelatedWork W3046775127 @default.
- W2077056987 hasRelatedWork W3094076422 @default.
- W2077056987 hasRelatedWork W3162567751 @default.
- W2077056987 hasRelatedWork W3210156800 @default.
- W2077056987 hasRelatedWork W4220686584 @default.
- W2077056987 hasRelatedWork W4221088574 @default.
- W2077056987 hasRelatedWork W4226172683 @default.
- W2077056987 hasRelatedWork W4285260836 @default.
- W2077056987 hasRelatedWork W4319309271 @default.
- W2077056987 hasVolume "9" @default.
- W2077056987 isParatext "false" @default.
- W2077056987 isRetracted "false" @default.
- W2077056987 magId "2077056987" @default.
- W2077056987 workType "article" @default.