Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077136246> ?p ?o ?g. }
- W2077136246 endingPage "1236" @default.
- W2077136246 startingPage "1227" @default.
- W2077136246 abstract "We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age." @default.
- W2077136246 created "2016-06-24" @default.
- W2077136246 creator A5005719046 @default.
- W2077136246 creator A5031484343 @default.
- W2077136246 creator A5043155843 @default.
- W2077136246 creator A5065963623 @default.
- W2077136246 creator A5067780829 @default.
- W2077136246 creator A5071094131 @default.
- W2077136246 date "2011-01-01" @default.
- W2077136246 modified "2023-10-18" @default.
- W2077136246 title "Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle" @default.
- W2077136246 cites W149526395 @default.
- W2077136246 cites W1970216847 @default.
- W2077136246 cites W1993492043 @default.
- W2077136246 cites W1996784275 @default.
- W2077136246 cites W1998880867 @default.
- W2077136246 cites W2027166293 @default.
- W2077136246 cites W2053951030 @default.
- W2077136246 cites W2098673739 @default.
- W2077136246 cites W2101847221 @default.
- W2077136246 cites W2104860889 @default.
- W2077136246 cites W2123487647 @default.
- W2077136246 cites W2131649050 @default.
- W2077136246 cites W2139624169 @default.
- W2077136246 cites W2167938642 @default.
- W2077136246 cites W66349694 @default.
- W2077136246 cites W67931143 @default.
- W2077136246 cites W77870844 @default.
- W2077136246 doi "https://doi.org/10.4238/vol10-2gmr1087" @default.
- W2077136246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21732287" @default.
- W2077136246 hasPublicationYear "2011" @default.
- W2077136246 type Work @default.
- W2077136246 sameAs 2077136246 @default.
- W2077136246 citedByCount "9" @default.
- W2077136246 countsByYear W20771362462012 @default.
- W2077136246 countsByYear W20771362462013 @default.
- W2077136246 countsByYear W20771362462014 @default.
- W2077136246 countsByYear W20771362462015 @default.
- W2077136246 countsByYear W20771362462017 @default.
- W2077136246 countsByYear W20771362462019 @default.
- W2077136246 crossrefType "journal-article" @default.
- W2077136246 hasAuthorship W2077136246A5005719046 @default.
- W2077136246 hasAuthorship W2077136246A5031484343 @default.
- W2077136246 hasAuthorship W2077136246A5043155843 @default.
- W2077136246 hasAuthorship W2077136246A5065963623 @default.
- W2077136246 hasAuthorship W2077136246A5067780829 @default.
- W2077136246 hasAuthorship W2077136246A5071094131 @default.
- W2077136246 hasBestOaLocation W20771362461 @default.
- W2077136246 hasConcept C105795698 @default.
- W2077136246 hasConcept C106934330 @default.
- W2077136246 hasConcept C111458787 @default.
- W2077136246 hasConcept C120068334 @default.
- W2077136246 hasConcept C126322002 @default.
- W2077136246 hasConcept C134306372 @default.
- W2077136246 hasConcept C140793950 @default.
- W2077136246 hasConcept C152877465 @default.
- W2077136246 hasConcept C168743327 @default.
- W2077136246 hasConcept C199360897 @default.
- W2077136246 hasConcept C2779234561 @default.
- W2077136246 hasConcept C2780505807 @default.
- W2077136246 hasConcept C33923547 @default.
- W2077136246 hasConcept C41008148 @default.
- W2077136246 hasConcept C48921125 @default.
- W2077136246 hasConcept C54355233 @default.
- W2077136246 hasConcept C66322754 @default.
- W2077136246 hasConcept C71924100 @default.
- W2077136246 hasConcept C83546350 @default.
- W2077136246 hasConcept C86803240 @default.
- W2077136246 hasConcept C95190672 @default.
- W2077136246 hasConceptScore W2077136246C105795698 @default.
- W2077136246 hasConceptScore W2077136246C106934330 @default.
- W2077136246 hasConceptScore W2077136246C111458787 @default.
- W2077136246 hasConceptScore W2077136246C120068334 @default.
- W2077136246 hasConceptScore W2077136246C126322002 @default.
- W2077136246 hasConceptScore W2077136246C134306372 @default.
- W2077136246 hasConceptScore W2077136246C140793950 @default.
- W2077136246 hasConceptScore W2077136246C152877465 @default.
- W2077136246 hasConceptScore W2077136246C168743327 @default.
- W2077136246 hasConceptScore W2077136246C199360897 @default.
- W2077136246 hasConceptScore W2077136246C2779234561 @default.
- W2077136246 hasConceptScore W2077136246C2780505807 @default.
- W2077136246 hasConceptScore W2077136246C33923547 @default.
- W2077136246 hasConceptScore W2077136246C41008148 @default.
- W2077136246 hasConceptScore W2077136246C48921125 @default.
- W2077136246 hasConceptScore W2077136246C54355233 @default.
- W2077136246 hasConceptScore W2077136246C66322754 @default.
- W2077136246 hasConceptScore W2077136246C71924100 @default.
- W2077136246 hasConceptScore W2077136246C83546350 @default.
- W2077136246 hasConceptScore W2077136246C86803240 @default.
- W2077136246 hasConceptScore W2077136246C95190672 @default.
- W2077136246 hasIssue "2" @default.
- W2077136246 hasLocation W20771362461 @default.
- W2077136246 hasLocation W20771362462 @default.
- W2077136246 hasLocation W20771362463 @default.
- W2077136246 hasOpenAccess W2077136246 @default.
- W2077136246 hasPrimaryLocation W20771362461 @default.
- W2077136246 hasRelatedWork W1555242842 @default.
- W2077136246 hasRelatedWork W1989645679 @default.