Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077152228> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2077152228 abstract "One of the great challenges of contemporary neuroscience is understanding in a quantitative manner how neurons and neural ensembles encode and process information in the form of action potentials. The advent of multi-electrode arrays which can record large amounts of data simultaneously from several neurons has made this task more urgent. This task, however, is made difficult by the inherent complexity of neural systems which are highly nonlinear, interconnected, dynamic, and subject to stochastic variations. Furthermore, while several methods exist which offer good predictive performance for spike train modeling, their adoption in the broader neuroscience community has been limited due to their mathematical complexity and lack of interpretability.Here we present a novel and intuitive methodology of modeling nonlinear dynamic systems with point process inputs and outputs, such as interconnected neuronal ensembles. The method relies on the expression of the nonlinearity in the form of Volterra-like kernels, termed the Probability-Based Volterra (PBV) kernels. The nth order PBV kernel, PBVn, is derived in two steps. First, we calculate the conditional probability of an output spike given n input spikes at various lags. Second, we subtract lower order effects to isolate the nth order nonlinearity. Thus, the first PBV kernel, PBV1(τ), is the conditional probability of an output spike given a spike in the input spike train at time τ, minus the probability that there will be a spike in the output, i.e.:PBV1(τ)=P(y[t]|x[t-τ])-P(y[t])(1)This first order kernel describes a linear impulse response filter similar to that derived from spike triggered averaging and cross-correlation methods. The second order PBV kernel, PBV2(τ1, τ2), which is the first nonlinear kernel, is the conditional probability of an output spike given a pair of input spikes minus the conditional probability of an output spike given either one of those input spikes individually, i.e.:PBV2τ1,τ2=Py[t]|x[t-τ1]∩x[t-τ2]-P(y[t]|x[t-τ1])-P(y[t]|x[t-τ2])+P(y[t])(2)This method may be extended to describe the contribution of n pairs spikes to the output in the form of the nth PBV kernel. We show that the PBV kernels are equivalent to the Wiener kernels when the input is a Poisson process, thus placing the PBV kernels in the context of a well-established and rigorous mathematical theory [1].The proposed PBV methodology was applied to synthetic systems where the ground truth of the model was available. The PBV kernels were found to both accurately estimate the ground truth kernels and to reproduce the given output, thus validating the method. Finally, the proposed PBV methodology was applied to real neural data derived from the CA3 and CA1 regions of the rodent hippocampus [2]. Although here ground truth was not available, the PBV kernels were able to reproduce the output as well as other models which have been validated both mathematically and in-vivo in the context of neural prosthetics [2]." @default.
- W2077152228 created "2016-06-24" @default.
- W2077152228 creator A5014818977 @default.
- W2077152228 creator A5018388680 @default.
- W2077152228 creator A5036646017 @default.
- W2077152228 creator A5070732235 @default.
- W2077152228 creator A5073769081 @default.
- W2077152228 creator A5085024213 @default.
- W2077152228 date "2014-07-01" @default.
- W2077152228 modified "2023-09-26" @default.
- W2077152228 title "Probability-based nonlinear modeling of neural dynamical systems with point-process inputs and outputs" @default.
- W2077152228 cites W2004241505 @default.
- W2077152228 cites W2130764557 @default.
- W2077152228 doi "https://doi.org/10.1186/1471-2202-15-s1-p102" @default.
- W2077152228 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4124976" @default.
- W2077152228 hasPublicationYear "2014" @default.
- W2077152228 type Work @default.
- W2077152228 sameAs 2077152228 @default.
- W2077152228 citedByCount "1" @default.
- W2077152228 countsByYear W20771522282014 @default.
- W2077152228 crossrefType "journal-article" @default.
- W2077152228 hasAuthorship W2077152228A5014818977 @default.
- W2077152228 hasAuthorship W2077152228A5018388680 @default.
- W2077152228 hasAuthorship W2077152228A5036646017 @default.
- W2077152228 hasAuthorship W2077152228A5070732235 @default.
- W2077152228 hasAuthorship W2077152228A5073769081 @default.
- W2077152228 hasAuthorship W2077152228A5085024213 @default.
- W2077152228 hasBestOaLocation W20771522281 @default.
- W2077152228 hasConcept C105795698 @default.
- W2077152228 hasConcept C111919701 @default.
- W2077152228 hasConcept C121332964 @default.
- W2077152228 hasConcept C154945302 @default.
- W2077152228 hasConcept C15744967 @default.
- W2077152228 hasConcept C158622935 @default.
- W2077152228 hasConcept C169760540 @default.
- W2077152228 hasConcept C2524010 @default.
- W2077152228 hasConcept C28719098 @default.
- W2077152228 hasConcept C2986949344 @default.
- W2077152228 hasConcept C33923547 @default.
- W2077152228 hasConcept C41008148 @default.
- W2077152228 hasConcept C50644808 @default.
- W2077152228 hasConcept C62520636 @default.
- W2077152228 hasConcept C79379906 @default.
- W2077152228 hasConcept C88871306 @default.
- W2077152228 hasConcept C98045186 @default.
- W2077152228 hasConceptScore W2077152228C105795698 @default.
- W2077152228 hasConceptScore W2077152228C111919701 @default.
- W2077152228 hasConceptScore W2077152228C121332964 @default.
- W2077152228 hasConceptScore W2077152228C154945302 @default.
- W2077152228 hasConceptScore W2077152228C15744967 @default.
- W2077152228 hasConceptScore W2077152228C158622935 @default.
- W2077152228 hasConceptScore W2077152228C169760540 @default.
- W2077152228 hasConceptScore W2077152228C2524010 @default.
- W2077152228 hasConceptScore W2077152228C28719098 @default.
- W2077152228 hasConceptScore W2077152228C2986949344 @default.
- W2077152228 hasConceptScore W2077152228C33923547 @default.
- W2077152228 hasConceptScore W2077152228C41008148 @default.
- W2077152228 hasConceptScore W2077152228C50644808 @default.
- W2077152228 hasConceptScore W2077152228C62520636 @default.
- W2077152228 hasConceptScore W2077152228C79379906 @default.
- W2077152228 hasConceptScore W2077152228C88871306 @default.
- W2077152228 hasConceptScore W2077152228C98045186 @default.
- W2077152228 hasIssue "S1" @default.
- W2077152228 hasLocation W20771522281 @default.
- W2077152228 hasLocation W20771522282 @default.
- W2077152228 hasLocation W20771522283 @default.
- W2077152228 hasOpenAccess W2077152228 @default.
- W2077152228 hasPrimaryLocation W20771522281 @default.
- W2077152228 hasRelatedWork W1967882366 @default.
- W2077152228 hasRelatedWork W2013439845 @default.
- W2077152228 hasRelatedWork W2162154182 @default.
- W2077152228 hasRelatedWork W2371928941 @default.
- W2077152228 hasRelatedWork W2385960805 @default.
- W2077152228 hasRelatedWork W2386387936 @default.
- W2077152228 hasRelatedWork W2392808951 @default.
- W2077152228 hasRelatedWork W2392819886 @default.
- W2077152228 hasRelatedWork W2411512130 @default.
- W2077152228 hasRelatedWork W2899217644 @default.
- W2077152228 hasVolume "15" @default.
- W2077152228 isParatext "false" @default.
- W2077152228 isRetracted "false" @default.
- W2077152228 magId "2077152228" @default.
- W2077152228 workType "article" @default.