Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077230368> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2077230368 abstract "ABSTRACT The main meteorological parameters which influencing the rainfall can be distilled from the MODIS satellite cloud imagery and the artificial neural network (ANN) model constructed by these meteorological parameters and can be applied on distributed rainfall estimation. Because it is difficult to decide the structure of back propagation neural network (BPNN) and to solve the problem of local convergence, an appropriate training and modeling method of ANN such as the real code genetic algorithm (RGA) is vital to the accuracy of rainfall estimation. The data of the simulation tests show that the Mean Relative Error (MRE) of BPA model is 23.6%, while the MRE of RGA model is 20.7%, Compared with the ANN trained by BPA, the estimation error of the ANN trained by RGA is cut down by 2.9%, and the Root Mean Squared Error (RMSE) is cut down by 2.5% at the same time, hence, the results prove that the ANN model trained using RGA will significantly outperform the back propagation algorithm (BPA) trained ANN model and improve the precision of rainfall estimation. Keywords: remote sensing; EOS/MODIS; artificial neural network (ANN); back propagation algorithm (BPA); genetic algorithm (GA); distributed rainfall estimation 1. INTRODUCTION Rainfall precipitation is an important but highly variable atmospheric parameter, and in a large river basin, different area has different weather condition, conventional methods of retrieved meteorological parameters are pretty difficult to satisfy the hydrological need. While the technology of remote sensing can obtain the distributed meteorological parameters in each unit area of the river basin, therefore, remote sensing is more effective and convenient than conventional methods in relevant surveys and studies. Moreover, the existing rainfall station network cannot provide the temporal and spatial coverage which are necessary for sufficient monitoring, so their application for accurate precipitation estimation with good temporal and spatial coverage is hampered by the existing technical limitation problems. Compared with the existing rainfall station network, the satellite measurements have the advantage of providing spatially and temporally homogeneous observations over a large area, such as GMS, TM, AVHRR and MODIS satellite images. In these satellite sensors, the moderate resolution imaging spectroradiometer (MODIS) has the wide spectral range and spatial coverage of 36 spectral bands sampling the electromagnetic spectrum from 0.4 to 14 um with a spatial resolution ranging from 250 to 1,000 meters" @default.
- W2077230368 created "2016-06-24" @default.
- W2077230368 creator A5012486505 @default.
- W2077230368 creator A5071680023 @default.
- W2077230368 creator A5085474562 @default.
- W2077230368 date "2007-11-15" @default.
- W2077230368 modified "2023-09-23" @default.
- W2077230368 title "Application of EOS/MODIS remote sensing dataset to ANN/GA modeling of distributed precipitation estimation" @default.
- W2077230368 doi "https://doi.org/10.1117/12.750241" @default.
- W2077230368 hasPublicationYear "2007" @default.
- W2077230368 type Work @default.
- W2077230368 sameAs 2077230368 @default.
- W2077230368 citedByCount "0" @default.
- W2077230368 crossrefType "proceedings-article" @default.
- W2077230368 hasAuthorship W2077230368A5012486505 @default.
- W2077230368 hasAuthorship W2077230368A5071680023 @default.
- W2077230368 hasAuthorship W2077230368A5085474562 @default.
- W2077230368 hasConcept C105795698 @default.
- W2077230368 hasConcept C107054158 @default.
- W2077230368 hasConcept C11413529 @default.
- W2077230368 hasConcept C119857082 @default.
- W2077230368 hasConcept C127313418 @default.
- W2077230368 hasConcept C139945424 @default.
- W2077230368 hasConcept C153294291 @default.
- W2077230368 hasConcept C155032097 @default.
- W2077230368 hasConcept C205649164 @default.
- W2077230368 hasConcept C33923547 @default.
- W2077230368 hasConcept C39432304 @default.
- W2077230368 hasConcept C41008148 @default.
- W2077230368 hasConcept C50644808 @default.
- W2077230368 hasConcept C62649853 @default.
- W2077230368 hasConcept C8880873 @default.
- W2077230368 hasConceptScore W2077230368C105795698 @default.
- W2077230368 hasConceptScore W2077230368C107054158 @default.
- W2077230368 hasConceptScore W2077230368C11413529 @default.
- W2077230368 hasConceptScore W2077230368C119857082 @default.
- W2077230368 hasConceptScore W2077230368C127313418 @default.
- W2077230368 hasConceptScore W2077230368C139945424 @default.
- W2077230368 hasConceptScore W2077230368C153294291 @default.
- W2077230368 hasConceptScore W2077230368C155032097 @default.
- W2077230368 hasConceptScore W2077230368C205649164 @default.
- W2077230368 hasConceptScore W2077230368C33923547 @default.
- W2077230368 hasConceptScore W2077230368C39432304 @default.
- W2077230368 hasConceptScore W2077230368C41008148 @default.
- W2077230368 hasConceptScore W2077230368C50644808 @default.
- W2077230368 hasConceptScore W2077230368C62649853 @default.
- W2077230368 hasConceptScore W2077230368C8880873 @default.
- W2077230368 hasLocation W20772303681 @default.
- W2077230368 hasOpenAccess W2077230368 @default.
- W2077230368 hasPrimaryLocation W20772303681 @default.
- W2077230368 hasRelatedWork W2155753288 @default.
- W2077230368 hasRelatedWork W2294083781 @default.
- W2077230368 hasRelatedWork W2352239882 @default.
- W2077230368 hasRelatedWork W2353150781 @default.
- W2077230368 hasRelatedWork W2382630740 @default.
- W2077230368 hasRelatedWork W2384175025 @default.
- W2077230368 hasRelatedWork W2590475592 @default.
- W2077230368 hasRelatedWork W3201182316 @default.
- W2077230368 hasRelatedWork W4280495300 @default.
- W2077230368 hasRelatedWork W4296107655 @default.
- W2077230368 isParatext "false" @default.
- W2077230368 isRetracted "false" @default.
- W2077230368 magId "2077230368" @default.
- W2077230368 workType "article" @default.