Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077280260> ?p ?o ?g. }
- W2077280260 abstract "Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once. We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-interacting RNAs), some of which differentially expressed in proliferating vs growth arrested cells. The integrated data analysis pipeline described here is based on a reliable, flexible and fully automated workflow, useful to rapidly and efficiently analyze high-throughput smallRNA-Seq data, such as those produced by the most recent high-performance next generation sequencers. iMir is available at http://www.labmedmolge.unisa.it/inglese/research/imir ." @default.
- W2077280260 created "2016-06-24" @default.
- W2077280260 creator A5009028518 @default.
- W2077280260 creator A5021629872 @default.
- W2077280260 creator A5050045829 @default.
- W2077280260 creator A5061245348 @default.
- W2077280260 creator A5062018914 @default.
- W2077280260 creator A5074796019 @default.
- W2077280260 creator A5076810301 @default.
- W2077280260 creator A5085978275 @default.
- W2077280260 creator A5089905867 @default.
- W2077280260 date "2013-12-01" @default.
- W2077280260 modified "2023-10-09" @default.
- W2077280260 title "iMir: An integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq" @default.
- W2077280260 cites W144423133 @default.
- W2077280260 cites W1980269624 @default.
- W2077280260 cites W1992941735 @default.
- W2077280260 cites W1999470996 @default.
- W2077280260 cites W2004791359 @default.
- W2077280260 cites W2013210832 @default.
- W2077280260 cites W2014208702 @default.
- W2077280260 cites W2014946489 @default.
- W2077280260 cites W2017364735 @default.
- W2077280260 cites W2017426710 @default.
- W2077280260 cites W2021137575 @default.
- W2077280260 cites W2026051181 @default.
- W2077280260 cites W2026570544 @default.
- W2077280260 cites W2030120875 @default.
- W2077280260 cites W2035930185 @default.
- W2077280260 cites W2036897871 @default.
- W2077280260 cites W2039213901 @default.
- W2077280260 cites W2041509376 @default.
- W2077280260 cites W2044832480 @default.
- W2077280260 cites W2050465838 @default.
- W2077280260 cites W2050642406 @default.
- W2077280260 cites W2054109341 @default.
- W2077280260 cites W2057100799 @default.
- W2077280260 cites W2059073003 @default.
- W2077280260 cites W2062688476 @default.
- W2077280260 cites W2067594036 @default.
- W2077280260 cites W2070571588 @default.
- W2077280260 cites W2071645976 @default.
- W2077280260 cites W2075863097 @default.
- W2077280260 cites W2080551186 @default.
- W2077280260 cites W2083381199 @default.
- W2077280260 cites W2083778040 @default.
- W2077280260 cites W2087104878 @default.
- W2077280260 cites W2105136471 @default.
- W2077280260 cites W2111969156 @default.
- W2077280260 cites W2112192177 @default.
- W2077280260 cites W2112810020 @default.
- W2077280260 cites W2117391818 @default.
- W2077280260 cites W2130305733 @default.
- W2077280260 cites W2137988707 @default.
- W2077280260 cites W2138561583 @default.
- W2077280260 cites W2138683123 @default.
- W2077280260 cites W2142767404 @default.
- W2077280260 cites W2149291473 @default.
- W2077280260 cites W2151922790 @default.
- W2077280260 cites W2152239989 @default.
- W2077280260 cites W2152269273 @default.
- W2077280260 cites W2166706771 @default.
- W2077280260 cites W2167557255 @default.
- W2077280260 cites W2168230240 @default.
- W2077280260 cites W2171139781 @default.
- W2077280260 doi "https://doi.org/10.1186/1471-2105-14-362" @default.
- W2077280260 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3878829" @default.
- W2077280260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24330401" @default.
- W2077280260 hasPublicationYear "2013" @default.
- W2077280260 type Work @default.
- W2077280260 sameAs 2077280260 @default.
- W2077280260 citedByCount "54" @default.
- W2077280260 countsByYear W20772802602014 @default.
- W2077280260 countsByYear W20772802602015 @default.
- W2077280260 countsByYear W20772802602016 @default.
- W2077280260 countsByYear W20772802602017 @default.
- W2077280260 countsByYear W20772802602018 @default.
- W2077280260 countsByYear W20772802602019 @default.
- W2077280260 countsByYear W20772802602020 @default.
- W2077280260 countsByYear W20772802602021 @default.
- W2077280260 crossrefType "journal-article" @default.
- W2077280260 hasAuthorship W2077280260A5009028518 @default.
- W2077280260 hasAuthorship W2077280260A5021629872 @default.
- W2077280260 hasAuthorship W2077280260A5050045829 @default.
- W2077280260 hasAuthorship W2077280260A5061245348 @default.
- W2077280260 hasAuthorship W2077280260A5062018914 @default.
- W2077280260 hasAuthorship W2077280260A5074796019 @default.
- W2077280260 hasAuthorship W2077280260A5076810301 @default.
- W2077280260 hasAuthorship W2077280260A5085978275 @default.
- W2077280260 hasAuthorship W2077280260A5089905867 @default.
- W2077280260 hasBestOaLocation W20772802601 @default.
- W2077280260 hasConcept C104317684 @default.
- W2077280260 hasConcept C111919701 @default.
- W2077280260 hasConcept C124101348 @default.
- W2077280260 hasConcept C145059251 @default.
- W2077280260 hasConcept C177212765 @default.
- W2077280260 hasConcept C177284502 @default.
- W2077280260 hasConcept C199360897 @default.
- W2077280260 hasConcept C2779341050 @default.
- W2077280260 hasConcept C41008148 @default.