Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077305093> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2077305093 endingPage "2271" @default.
- W2077305093 startingPage "2260" @default.
- W2077305093 abstract "Power consumption has became a critical concern in modern computing systems for various reasons including financial savings and environmental protection. With battery powered devices, we need to care about the available amount of energy since it is limited. For the case of supercomputers, as they imply a large aggregation of heavy CPU activities, we are exposed to a risk of overheating. As the design of current and future hardware is becoming more and more complex, energy prediction or estimation is as elusive as that of time performance. However, having a good prediction of power consumption is still an important request to the computer science community. Indeed, power consumption might become a common performance and cost metric in the near future. A good methodology for energy prediction could have a great impact on power-aware programming, compilation, or runtime monitoring. In this paper, we try to understand from measurements where and how power is consumed at the level of a computing node. We focus on a set of basic programming instructions, more precisely those related to CPU and memory. We propose an analytical prediction model based on the hypothesis that each basic instruction has an average energy cost that can be estimated on a given architecture through a series of micro-benchmarks. The considered energy cost per operation includes both the overhead of the embedding loop and associated (hardware/software) optimizations. Using these precalculated values, we derive a linear extrapolation model to predict the energy of a given algorithm expressed by means of atomic instructions. We then use three selected applications to check the accuracy of our prediction method by comparing our estimations with the corresponding measurements obtained using a multimeter. We show a 9.48% energy prediction on sorting." @default.
- W2077305093 created "2016-06-24" @default.
- W2077305093 creator A5000166126 @default.
- W2077305093 creator A5005717412 @default.
- W2077305093 creator A5057912061 @default.
- W2077305093 creator A5064765249 @default.
- W2077305093 date "2014-01-01" @default.
- W2077305093 modified "2023-10-16" @default.
- W2077305093 title "A Fine-grained Approach for Power Consumption Analysis and Prediction" @default.
- W2077305093 cites W1481500673 @default.
- W2077305093 cites W1499363028 @default.
- W2077305093 cites W2014546690 @default.
- W2077305093 cites W2032810145 @default.
- W2077305093 cites W2034674049 @default.
- W2077305093 cites W2082419456 @default.
- W2077305093 cites W2102727118 @default.
- W2077305093 cites W2103383431 @default.
- W2077305093 cites W2106589022 @default.
- W2077305093 cites W2115157620 @default.
- W2077305093 cites W2120318522 @default.
- W2077305093 cites W2129663297 @default.
- W2077305093 cites W2130587389 @default.
- W2077305093 cites W2144293278 @default.
- W2077305093 cites W2169649736 @default.
- W2077305093 cites W2171935755 @default.
- W2077305093 cites W2541475019 @default.
- W2077305093 cites W3006997840 @default.
- W2077305093 cites W40192171 @default.
- W2077305093 cites W4242123872 @default.
- W2077305093 cites W4244593655 @default.
- W2077305093 doi "https://doi.org/10.1016/j.procs.2014.05.211" @default.
- W2077305093 hasPublicationYear "2014" @default.
- W2077305093 type Work @default.
- W2077305093 sameAs 2077305093 @default.
- W2077305093 citedByCount "9" @default.
- W2077305093 countsByYear W20773050932015 @default.
- W2077305093 countsByYear W20773050932016 @default.
- W2077305093 countsByYear W20773050932018 @default.
- W2077305093 countsByYear W20773050932020 @default.
- W2077305093 countsByYear W20773050932022 @default.
- W2077305093 crossrefType "journal-article" @default.
- W2077305093 hasAuthorship W2077305093A5000166126 @default.
- W2077305093 hasAuthorship W2077305093A5005717412 @default.
- W2077305093 hasAuthorship W2077305093A5057912061 @default.
- W2077305093 hasAuthorship W2077305093A5064765249 @default.
- W2077305093 hasBestOaLocation W20773050931 @default.
- W2077305093 hasConcept C111919701 @default.
- W2077305093 hasConcept C113775141 @default.
- W2077305093 hasConcept C120314980 @default.
- W2077305093 hasConcept C127413603 @default.
- W2077305093 hasConcept C149635348 @default.
- W2077305093 hasConcept C162324750 @default.
- W2077305093 hasConcept C176217482 @default.
- W2077305093 hasConcept C18903297 @default.
- W2077305093 hasConcept C200601418 @default.
- W2077305093 hasConcept C21547014 @default.
- W2077305093 hasConcept C2777904410 @default.
- W2077305093 hasConcept C2779960059 @default.
- W2077305093 hasConcept C2780165032 @default.
- W2077305093 hasConcept C41008148 @default.
- W2077305093 hasConcept C86803240 @default.
- W2077305093 hasConceptScore W2077305093C111919701 @default.
- W2077305093 hasConceptScore W2077305093C113775141 @default.
- W2077305093 hasConceptScore W2077305093C120314980 @default.
- W2077305093 hasConceptScore W2077305093C127413603 @default.
- W2077305093 hasConceptScore W2077305093C149635348 @default.
- W2077305093 hasConceptScore W2077305093C162324750 @default.
- W2077305093 hasConceptScore W2077305093C176217482 @default.
- W2077305093 hasConceptScore W2077305093C18903297 @default.
- W2077305093 hasConceptScore W2077305093C200601418 @default.
- W2077305093 hasConceptScore W2077305093C21547014 @default.
- W2077305093 hasConceptScore W2077305093C2777904410 @default.
- W2077305093 hasConceptScore W2077305093C2779960059 @default.
- W2077305093 hasConceptScore W2077305093C2780165032 @default.
- W2077305093 hasConceptScore W2077305093C41008148 @default.
- W2077305093 hasConceptScore W2077305093C86803240 @default.
- W2077305093 hasLocation W20773050931 @default.
- W2077305093 hasLocation W20773050932 @default.
- W2077305093 hasLocation W20773050933 @default.
- W2077305093 hasLocation W20773050934 @default.
- W2077305093 hasOpenAccess W2077305093 @default.
- W2077305093 hasPrimaryLocation W20773050931 @default.
- W2077305093 hasRelatedWork W1483190388 @default.
- W2077305093 hasRelatedWork W193873054 @default.
- W2077305093 hasRelatedWork W1993210935 @default.
- W2077305093 hasRelatedWork W2061536531 @default.
- W2077305093 hasRelatedWork W2375742443 @default.
- W2077305093 hasRelatedWork W2752178021 @default.
- W2077305093 hasRelatedWork W2952348651 @default.
- W2077305093 hasRelatedWork W3147033875 @default.
- W2077305093 hasRelatedWork W4200520489 @default.
- W2077305093 hasRelatedWork W4376453582 @default.
- W2077305093 hasVolume "29" @default.
- W2077305093 isParatext "false" @default.
- W2077305093 isRetracted "false" @default.
- W2077305093 magId "2077305093" @default.
- W2077305093 workType "article" @default.