Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077313366> ?p ?o ?g. }
- W2077313366 endingPage "1701" @default.
- W2077313366 startingPage "1693" @default.
- W2077313366 abstract "Although promising for studying the microstructure of in vivo tissues, the performance and the potentiality of diffusion tensor magnetic resonance imaging are hampered by the presence of high-level noise in diffusion weighted (DW) images. This paper proposes a novel smoothing approach, called the nonstationarity adaptive filtering, which estimates the intensity of a pixel by averaging intensities in its adaptive homogeneous neighborhood. The latter is determined according to five constraints and spatiodirectional nonstationarity measure maps. The proposed approach is compared with an anisotropic diffusion method used in DW image smoothing. Experimental results on both synthetic and real human DW images show that the proposed method achieves a better compromise between the smoothness of homogeneous regions and the preservation of desirable features such as boundaries, even for highly noisy data, thus leading to homogeneously consistent tensor fields and consequently more coherent fibers." @default.
- W2077313366 created "2016-06-24" @default.
- W2077313366 creator A5000002873 @default.
- W2077313366 creator A5002863452 @default.
- W2077313366 creator A5065459067 @default.
- W2077313366 creator A5073397412 @default.
- W2077313366 date "2013-06-01" @default.
- W2077313366 modified "2023-09-25" @default.
- W2077313366 title "Feature-Preserving Smoothing of Diffusion Weighted Images Using Nonstationarity Adaptive Filtering" @default.
- W2077313366 cites W127809959 @default.
- W2077313366 cites W1964802316 @default.
- W2077313366 cites W1964941127 @default.
- W2077313366 cites W1989616685 @default.
- W2077313366 cites W1995050389 @default.
- W2077313366 cites W1997222702 @default.
- W2077313366 cites W2004006028 @default.
- W2077313366 cites W2010365263 @default.
- W2077313366 cites W2014617656 @default.
- W2077313366 cites W2017492739 @default.
- W2077313366 cites W2020332292 @default.
- W2077313366 cites W2028184099 @default.
- W2077313366 cites W2048192550 @default.
- W2077313366 cites W2055444896 @default.
- W2077313366 cites W2069153910 @default.
- W2077313366 cites W2071280448 @default.
- W2077313366 cites W2078729825 @default.
- W2077313366 cites W2083966666 @default.
- W2077313366 cites W2087883319 @default.
- W2077313366 cites W2109502845 @default.
- W2077313366 cites W2133665775 @default.
- W2077313366 cites W2139158372 @default.
- W2077313366 cites W2148800344 @default.
- W2077313366 cites W2149337534 @default.
- W2077313366 cites W2149730302 @default.
- W2077313366 cites W2150134853 @default.
- W2077313366 cites W2156345158 @default.
- W2077313366 cites W2161119653 @default.
- W2077313366 cites W2164355691 @default.
- W2077313366 cites W2166134413 @default.
- W2077313366 cites W2734600884 @default.
- W2077313366 doi "https://doi.org/10.1109/tbme.2013.2240453" @default.
- W2077313366 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23335660" @default.
- W2077313366 hasPublicationYear "2013" @default.
- W2077313366 type Work @default.
- W2077313366 sameAs 2077313366 @default.
- W2077313366 citedByCount "9" @default.
- W2077313366 countsByYear W20773133662013 @default.
- W2077313366 countsByYear W20773133662015 @default.
- W2077313366 countsByYear W20773133662017 @default.
- W2077313366 countsByYear W20773133662019 @default.
- W2077313366 countsByYear W20773133662020 @default.
- W2077313366 countsByYear W20773133662021 @default.
- W2077313366 countsByYear W20773133662022 @default.
- W2077313366 crossrefType "journal-article" @default.
- W2077313366 hasAuthorship W2077313366A5000002873 @default.
- W2077313366 hasAuthorship W2077313366A5002863452 @default.
- W2077313366 hasAuthorship W2077313366A5065459067 @default.
- W2077313366 hasAuthorship W2077313366A5073397412 @default.
- W2077313366 hasConcept C102634674 @default.
- W2077313366 hasConcept C113315163 @default.
- W2077313366 hasConcept C11413529 @default.
- W2077313366 hasConcept C115961682 @default.
- W2077313366 hasConcept C121332964 @default.
- W2077313366 hasConcept C124101348 @default.
- W2077313366 hasConcept C126838900 @default.
- W2077313366 hasConcept C134306372 @default.
- W2077313366 hasConcept C138885662 @default.
- W2077313366 hasConcept C141651230 @default.
- W2077313366 hasConcept C143409427 @default.
- W2077313366 hasConcept C149550507 @default.
- W2077313366 hasConcept C153180895 @default.
- W2077313366 hasConcept C154945302 @default.
- W2077313366 hasConcept C155281189 @default.
- W2077313366 hasConcept C160633673 @default.
- W2077313366 hasConcept C163294075 @default.
- W2077313366 hasConcept C203504353 @default.
- W2077313366 hasConcept C2524010 @default.
- W2077313366 hasConcept C2776401178 @default.
- W2077313366 hasConcept C2780009758 @default.
- W2077313366 hasConcept C31972630 @default.
- W2077313366 hasConcept C33923547 @default.
- W2077313366 hasConcept C3770464 @default.
- W2077313366 hasConcept C41008148 @default.
- W2077313366 hasConcept C41895202 @default.
- W2077313366 hasConcept C69357855 @default.
- W2077313366 hasConcept C71924100 @default.
- W2077313366 hasConcept C97355855 @default.
- W2077313366 hasConcept C99498987 @default.
- W2077313366 hasConceptScore W2077313366C102634674 @default.
- W2077313366 hasConceptScore W2077313366C113315163 @default.
- W2077313366 hasConceptScore W2077313366C11413529 @default.
- W2077313366 hasConceptScore W2077313366C115961682 @default.
- W2077313366 hasConceptScore W2077313366C121332964 @default.
- W2077313366 hasConceptScore W2077313366C124101348 @default.
- W2077313366 hasConceptScore W2077313366C126838900 @default.
- W2077313366 hasConceptScore W2077313366C134306372 @default.
- W2077313366 hasConceptScore W2077313366C138885662 @default.
- W2077313366 hasConceptScore W2077313366C141651230 @default.