Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077394622> ?p ?o ?g. }
- W2077394622 endingPage "115" @default.
- W2077394622 startingPage "108" @default.
- W2077394622 abstract "We applied two methods of blind spectral decomposition (MILCA and SNICA) to quantitative and qualitative analysis of UV absorption spectra of several non-trivial mixture types. Both methods use the concept of statistical independence and aim at the reconstruction of minimally dependent components from a linear mixture. We examined mixtures of major ecotoxicants (aromatic and polyaromatic hydrocarbons), amino acids and complex mixtures of vitamins in a veterinary drug. Both MICLA and SNICA were able to recover concentrations and individual spectra with minimal errors comparable with instrumental noise. In most cases their performance was similar to or better than that of other chemometric methods such as MCR-ALS, SIMPLISMA, RADICAL, JADE and FastICA. These results suggest that the ICA methods used in this study are suitable for real life applications. Data used in this paper along with simple matlab codes to reproduce paper figures can be found at http://www.klab.caltech.edu/~kraskov/MILCA/spectra" @default.
- W2077394622 created "2016-06-24" @default.
- W2077394622 creator A5005236456 @default.
- W2077394622 creator A5017883916 @default.
- W2077394622 creator A5019406279 @default.
- W2077394622 creator A5063310833 @default.
- W2077394622 date "2010-10-01" @default.
- W2077394622 modified "2023-09-25" @default.
- W2077394622 title "Independent components in spectroscopic analysis of complex mixtures" @default.
- W2077394622 cites W1514803271 @default.
- W2077394622 cites W1964485280 @default.
- W2077394622 cites W1993419109 @default.
- W2077394622 cites W2004933222 @default.
- W2077394622 cites W2016913783 @default.
- W2077394622 cites W2017106268 @default.
- W2077394622 cites W2024349178 @default.
- W2077394622 cites W2027233180 @default.
- W2077394622 cites W2039902016 @default.
- W2077394622 cites W2043905695 @default.
- W2077394622 cites W2055330568 @default.
- W2077394622 cites W2062786850 @default.
- W2077394622 cites W2078284480 @default.
- W2077394622 cites W2092939357 @default.
- W2077394622 cites W2099373664 @default.
- W2077394622 cites W2101087781 @default.
- W2077394622 cites W2139434156 @default.
- W2077394622 cites W2146951307 @default.
- W2077394622 cites W2162428674 @default.
- W2077394622 cites W2163354776 @default.
- W2077394622 cites W3104658819 @default.
- W2077394622 cites W4211088641 @default.
- W2077394622 cites W4211107172 @default.
- W2077394622 cites W4233194598 @default.
- W2077394622 cites W4240335748 @default.
- W2077394622 doi "https://doi.org/10.1016/j.chemolab.2010.05.023" @default.
- W2077394622 hasPublicationYear "2010" @default.
- W2077394622 type Work @default.
- W2077394622 sameAs 2077394622 @default.
- W2077394622 citedByCount "71" @default.
- W2077394622 countsByYear W20773946222012 @default.
- W2077394622 countsByYear W20773946222013 @default.
- W2077394622 countsByYear W20773946222014 @default.
- W2077394622 countsByYear W20773946222015 @default.
- W2077394622 countsByYear W20773946222016 @default.
- W2077394622 countsByYear W20773946222017 @default.
- W2077394622 countsByYear W20773946222018 @default.
- W2077394622 countsByYear W20773946222019 @default.
- W2077394622 countsByYear W20773946222020 @default.
- W2077394622 countsByYear W20773946222021 @default.
- W2077394622 countsByYear W20773946222022 @default.
- W2077394622 countsByYear W20773946222023 @default.
- W2077394622 crossrefType "journal-article" @default.
- W2077394622 hasAuthorship W2077394622A5005236456 @default.
- W2077394622 hasAuthorship W2077394622A5017883916 @default.
- W2077394622 hasAuthorship W2077394622A5019406279 @default.
- W2077394622 hasAuthorship W2077394622A5063310833 @default.
- W2077394622 hasBestOaLocation W20773946222 @default.
- W2077394622 hasConcept C105795698 @default.
- W2077394622 hasConcept C111919701 @default.
- W2077394622 hasConcept C113196181 @default.
- W2077394622 hasConcept C115961682 @default.
- W2077394622 hasConcept C120317606 @default.
- W2077394622 hasConcept C121332964 @default.
- W2077394622 hasConcept C127162648 @default.
- W2077394622 hasConcept C1276947 @default.
- W2077394622 hasConcept C153180895 @default.
- W2077394622 hasConcept C154945302 @default.
- W2077394622 hasConcept C157709420 @default.
- W2077394622 hasConcept C185592680 @default.
- W2077394622 hasConcept C186060115 @default.
- W2077394622 hasConcept C2780365114 @default.
- W2077394622 hasConcept C2988629283 @default.
- W2077394622 hasConcept C31258907 @default.
- W2077394622 hasConcept C33923547 @default.
- W2077394622 hasConcept C35651441 @default.
- W2077394622 hasConcept C41008148 @default.
- W2077394622 hasConcept C43617362 @default.
- W2077394622 hasConcept C4839761 @default.
- W2077394622 hasConcept C51432778 @default.
- W2077394622 hasConcept C86803240 @default.
- W2077394622 hasConcept C99498987 @default.
- W2077394622 hasConceptScore W2077394622C105795698 @default.
- W2077394622 hasConceptScore W2077394622C111919701 @default.
- W2077394622 hasConceptScore W2077394622C113196181 @default.
- W2077394622 hasConceptScore W2077394622C115961682 @default.
- W2077394622 hasConceptScore W2077394622C120317606 @default.
- W2077394622 hasConceptScore W2077394622C121332964 @default.
- W2077394622 hasConceptScore W2077394622C127162648 @default.
- W2077394622 hasConceptScore W2077394622C1276947 @default.
- W2077394622 hasConceptScore W2077394622C153180895 @default.
- W2077394622 hasConceptScore W2077394622C154945302 @default.
- W2077394622 hasConceptScore W2077394622C157709420 @default.
- W2077394622 hasConceptScore W2077394622C185592680 @default.
- W2077394622 hasConceptScore W2077394622C186060115 @default.
- W2077394622 hasConceptScore W2077394622C2780365114 @default.
- W2077394622 hasConceptScore W2077394622C2988629283 @default.
- W2077394622 hasConceptScore W2077394622C31258907 @default.
- W2077394622 hasConceptScore W2077394622C33923547 @default.