Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077477171> ?p ?o ?g. }
- W2077477171 endingPage "169" @default.
- W2077477171 startingPage "161" @default.
- W2077477171 abstract "A multicomponent analysis method based on principal component analysis-artificial neural network models (PC-ANN) is proposed for the determination of phenolic compounds. The method relies on the oxidative coupling of phenols (phenol, 2 chlorophenol, 3-chlorophenol and 4-chlorophenol) to N,N-diethyl-p-phenylenediamine in the presence of hexacyanoferrate(III). The reaction monitored at analytical wavelength 680 nm of the dye formed. Phenols can be determined individually over the concentration range 0.1–7.0 μg ml−1. Differences in the kinetic behavior of the four species were exploited by using PC-ANN, to resolve mixtures of phenol. After reducing the number of kinetic data using principal component analysis, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The optimized ANN allows the simultaneous quantitation of four analytes in mixtures with relative standard errors of prediction in the region of 5% for four species. The results show that PC-ANN is an efficient method for prediction of the four analytes." @default.
- W2077477171 created "2016-06-24" @default.
- W2077477171 creator A5067731952 @default.
- W2077477171 creator A5073226210 @default.
- W2077477171 date "2008-08-01" @default.
- W2077477171 modified "2023-10-12" @default.
- W2077477171 title "Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometric method" @default.
- W2077477171 cites W1965251624 @default.
- W2077477171 cites W1965525114 @default.
- W2077477171 cites W1965676752 @default.
- W2077477171 cites W1973688444 @default.
- W2077477171 cites W1981001672 @default.
- W2077477171 cites W1982120324 @default.
- W2077477171 cites W1983573897 @default.
- W2077477171 cites W1983606270 @default.
- W2077477171 cites W1985495750 @default.
- W2077477171 cites W1990286469 @default.
- W2077477171 cites W1990875038 @default.
- W2077477171 cites W1998506113 @default.
- W2077477171 cites W2006126414 @default.
- W2077477171 cites W2006977450 @default.
- W2077477171 cites W2007333852 @default.
- W2077477171 cites W2009783500 @default.
- W2077477171 cites W2009889695 @default.
- W2077477171 cites W2014194239 @default.
- W2077477171 cites W2017423305 @default.
- W2077477171 cites W2021528612 @default.
- W2077477171 cites W2024203688 @default.
- W2077477171 cites W2024805366 @default.
- W2077477171 cites W2031318909 @default.
- W2077477171 cites W2034448662 @default.
- W2077477171 cites W2040943964 @default.
- W2077477171 cites W2044999516 @default.
- W2077477171 cites W2047440487 @default.
- W2077477171 cites W2054289939 @default.
- W2077477171 cites W2058122881 @default.
- W2077477171 cites W2058382695 @default.
- W2077477171 cites W2063464044 @default.
- W2077477171 cites W2065775128 @default.
- W2077477171 cites W2065910794 @default.
- W2077477171 cites W2069942055 @default.
- W2077477171 cites W2072462334 @default.
- W2077477171 cites W2076515293 @default.
- W2077477171 cites W2080376853 @default.
- W2077477171 cites W2081164872 @default.
- W2077477171 cites W2083801266 @default.
- W2077477171 cites W2083871473 @default.
- W2077477171 cites W2084559921 @default.
- W2077477171 cites W2088729889 @default.
- W2077477171 cites W2089962851 @default.
- W2077477171 cites W2090511346 @default.
- W2077477171 cites W2093004437 @default.
- W2077477171 cites W2093358797 @default.
- W2077477171 cites W2095067188 @default.
- W2077477171 cites W2103328877 @default.
- W2077477171 cites W2113475091 @default.
- W2077477171 cites W2114013702 @default.
- W2077477171 cites W2116647285 @default.
- W2077477171 doi "https://doi.org/10.1016/j.jhazmat.2007.12.096" @default.
- W2077477171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18272286" @default.
- W2077477171 hasPublicationYear "2008" @default.
- W2077477171 type Work @default.
- W2077477171 sameAs 2077477171 @default.
- W2077477171 citedByCount "21" @default.
- W2077477171 countsByYear W20774771712013 @default.
- W2077477171 countsByYear W20774771712014 @default.
- W2077477171 countsByYear W20774771712015 @default.
- W2077477171 countsByYear W20774771712016 @default.
- W2077477171 countsByYear W20774771712018 @default.
- W2077477171 countsByYear W20774771712019 @default.
- W2077477171 countsByYear W20774771712020 @default.
- W2077477171 countsByYear W20774771712021 @default.
- W2077477171 countsByYear W20774771712022 @default.
- W2077477171 crossrefType "journal-article" @default.
- W2077477171 hasAuthorship W2077477171A5067731952 @default.
- W2077477171 hasAuthorship W2077477171A5073226210 @default.
- W2077477171 hasConcept C10390740 @default.
- W2077477171 hasConcept C121332964 @default.
- W2077477171 hasConcept C135889238 @default.
- W2077477171 hasConcept C154945302 @default.
- W2077477171 hasConcept C178790620 @default.
- W2077477171 hasConcept C185592680 @default.
- W2077477171 hasConcept C186060115 @default.
- W2077477171 hasConcept C27438332 @default.
- W2077477171 hasConcept C2776321286 @default.
- W2077477171 hasConcept C2777702071 @default.
- W2077477171 hasConcept C2777728882 @default.
- W2077477171 hasConcept C41008148 @default.
- W2077477171 hasConcept C43617362 @default.
- W2077477171 hasConcept C50644808 @default.
- W2077477171 hasConcept C62520636 @default.
- W2077477171 hasConcept C74887250 @default.
- W2077477171 hasConcept C86803240 @default.
- W2077477171 hasConceptScore W2077477171C10390740 @default.
- W2077477171 hasConceptScore W2077477171C121332964 @default.
- W2077477171 hasConceptScore W2077477171C135889238 @default.
- W2077477171 hasConceptScore W2077477171C154945302 @default.
- W2077477171 hasConceptScore W2077477171C178790620 @default.