Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077494044> ?p ?o ?g. }
- W2077494044 abstract "Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations." @default.
- W2077494044 created "2016-06-24" @default.
- W2077494044 creator A5059557438 @default.
- W2077494044 creator A5077789570 @default.
- W2077494044 creator A5077905182 @default.
- W2077494044 date "2013-10-01" @default.
- W2077494044 modified "2023-09-22" @default.
- W2077494044 title "Bayesian Model Averaging of Load Demand Forecasts from Neural Network Models" @default.
- W2077494044 cites W1534316855 @default.
- W2077494044 cites W1534477342 @default.
- W2077494044 cites W1535689967 @default.
- W2077494044 cites W1605276600 @default.
- W2077494044 cites W185455334 @default.
- W2077494044 cites W1978633258 @default.
- W2077494044 cites W1991420715 @default.
- W2077494044 cites W2018316544 @default.
- W2077494044 cites W2018936073 @default.
- W2077494044 cites W2031754865 @default.
- W2077494044 cites W2033774908 @default.
- W2077494044 cites W2037370667 @default.
- W2077494044 cites W2043650917 @default.
- W2077494044 cites W2046813720 @default.
- W2077494044 cites W2060050130 @default.
- W2077494044 cites W2070795314 @default.
- W2077494044 cites W2071258353 @default.
- W2077494044 cites W2088224042 @default.
- W2077494044 cites W2090322886 @default.
- W2077494044 cites W2102909661 @default.
- W2077494044 cites W2130794005 @default.
- W2077494044 cites W2133218851 @default.
- W2077494044 cites W2135293965 @default.
- W2077494044 cites W2145005786 @default.
- W2077494044 cites W2146588145 @default.
- W2077494044 cites W2151767444 @default.
- W2077494044 cites W2152933101 @default.
- W2077494044 cites W2155816288 @default.
- W2077494044 cites W2156444284 @default.
- W2077494044 cites W2158840489 @default.
- W2077494044 cites W2159740989 @default.
- W2077494044 cites W2160664614 @default.
- W2077494044 cites W2248408934 @default.
- W2077494044 cites W63919978 @default.
- W2077494044 doi "https://doi.org/10.1109/smc.2013.544" @default.
- W2077494044 hasPublicationYear "2013" @default.
- W2077494044 type Work @default.
- W2077494044 sameAs 2077494044 @default.
- W2077494044 citedByCount "2" @default.
- W2077494044 countsByYear W20774940442016 @default.
- W2077494044 countsByYear W20774940442019 @default.
- W2077494044 crossrefType "proceedings-article" @default.
- W2077494044 hasAuthorship W2077494044A5059557438 @default.
- W2077494044 hasAuthorship W2077494044A5077789570 @default.
- W2077494044 hasAuthorship W2077494044A5077905182 @default.
- W2077494044 hasConcept C107673813 @default.
- W2077494044 hasConcept C119857082 @default.
- W2077494044 hasConcept C119898033 @default.
- W2077494044 hasConcept C124101348 @default.
- W2077494044 hasConcept C154945302 @default.
- W2077494044 hasConcept C160234255 @default.
- W2077494044 hasConcept C177264268 @default.
- W2077494044 hasConcept C199360897 @default.
- W2077494044 hasConcept C41008148 @default.
- W2077494044 hasConcept C50644808 @default.
- W2077494044 hasConcept C58489278 @default.
- W2077494044 hasConceptScore W2077494044C107673813 @default.
- W2077494044 hasConceptScore W2077494044C119857082 @default.
- W2077494044 hasConceptScore W2077494044C119898033 @default.
- W2077494044 hasConceptScore W2077494044C124101348 @default.
- W2077494044 hasConceptScore W2077494044C154945302 @default.
- W2077494044 hasConceptScore W2077494044C160234255 @default.
- W2077494044 hasConceptScore W2077494044C177264268 @default.
- W2077494044 hasConceptScore W2077494044C199360897 @default.
- W2077494044 hasConceptScore W2077494044C41008148 @default.
- W2077494044 hasConceptScore W2077494044C50644808 @default.
- W2077494044 hasConceptScore W2077494044C58489278 @default.
- W2077494044 hasLocation W20774940441 @default.
- W2077494044 hasOpenAccess W2077494044 @default.
- W2077494044 hasPrimaryLocation W20774940441 @default.
- W2077494044 hasRelatedWork W1512730873 @default.
- W2077494044 hasRelatedWork W1535006492 @default.
- W2077494044 hasRelatedWork W1608755524 @default.
- W2077494044 hasRelatedWork W1641981500 @default.
- W2077494044 hasRelatedWork W1976269766 @default.
- W2077494044 hasRelatedWork W2033244792 @default.
- W2077494044 hasRelatedWork W2046184060 @default.
- W2077494044 hasRelatedWork W2072120873 @default.
- W2077494044 hasRelatedWork W2123650583 @default.
- W2077494044 hasRelatedWork W2128461093 @default.
- W2077494044 hasRelatedWork W2168034189 @default.
- W2077494044 hasRelatedWork W2207466483 @default.
- W2077494044 hasRelatedWork W2363457392 @default.
- W2077494044 hasRelatedWork W2374858226 @default.
- W2077494044 hasRelatedWork W2376926329 @default.
- W2077494044 hasRelatedWork W2538906514 @default.
- W2077494044 hasRelatedWork W2544204473 @default.
- W2077494044 hasRelatedWork W2797162213 @default.
- W2077494044 hasRelatedWork W3121190167 @default.
- W2077494044 hasRelatedWork W2113009563 @default.
- W2077494044 isParatext "false" @default.
- W2077494044 isRetracted "false" @default.