Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077520869> ?p ?o ?g. }
- W2077520869 endingPage "306" @default.
- W2077520869 startingPage "293" @default.
- W2077520869 abstract "Based on the theoretical foundation of hedonic methods, positive relationships between various types of environmental amenities and house sales price have been investigated. However, as hedonic theory does not provide any arguments in favor of specific sets of independent variables, this lack of theoretical support led researchers to select independent variables from empirical results and intuitive information of previous studies. In previous hedonic studies, the most widely used selection criterion was stepwise selection for multiple regression with ordinary least square (OLS) regression for model fitting. The objective of this study is to apply machine learning approaches to the hedonic variable selection and house sales price modeling. Two rule-based machine learning regression methods including Cubist and Random Forest (RF) were compared with the traditional OLS regression for hedonic modeling. Each regression method was applied to analyze 4469 house transaction data from Onondaga County, NY (USA) with two different neighborhood configurations (i.e., 100 m and 1 km radius buffers). Results showed that the RF resulted in the highest accuracy in terms of hedonic price modeling followed by Cubist and the traditional OLS method. Each regression method selected different sets of environmental variables for different neighborhood. Since the variables selected by RF method led to make an in-depth hypothesis reflecting the preferences of house buyers, RF may prove to be useful for important variable selection for the hedonic price equation as well as enhancing model performance." @default.
- W2077520869 created "2016-06-24" @default.
- W2077520869 creator A5004228941 @default.
- W2077520869 creator A5025435630 @default.
- W2077520869 creator A5069161853 @default.
- W2077520869 date "2012-09-01" @default.
- W2077520869 modified "2023-10-16" @default.
- W2077520869 title "Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY" @default.
- W2077520869 cites W126936368 @default.
- W2077520869 cites W1520812622 @default.
- W2077520869 cites W1564957762 @default.
- W2077520869 cites W1580064442 @default.
- W2077520869 cites W1605688901 @default.
- W2077520869 cites W184516859 @default.
- W2077520869 cites W1891351420 @default.
- W2077520869 cites W1979539465 @default.
- W2077520869 cites W1985662772 @default.
- W2077520869 cites W1986347518 @default.
- W2077520869 cites W1992603983 @default.
- W2077520869 cites W1995810372 @default.
- W2077520869 cites W2000114865 @default.
- W2077520869 cites W2003187416 @default.
- W2077520869 cites W2014963367 @default.
- W2077520869 cites W2016653157 @default.
- W2077520869 cites W2018255156 @default.
- W2077520869 cites W2019258023 @default.
- W2077520869 cites W2022143368 @default.
- W2077520869 cites W2023122141 @default.
- W2077520869 cites W2037056888 @default.
- W2077520869 cites W2040996383 @default.
- W2077520869 cites W2043300851 @default.
- W2077520869 cites W2046268078 @default.
- W2077520869 cites W2051688880 @default.
- W2077520869 cites W2058128642 @default.
- W2077520869 cites W2063907334 @default.
- W2077520869 cites W2065375664 @default.
- W2077520869 cites W2073153981 @default.
- W2077520869 cites W2073783727 @default.
- W2077520869 cites W2074145444 @default.
- W2077520869 cites W2074706806 @default.
- W2077520869 cites W2076181000 @default.
- W2077520869 cites W2078899431 @default.
- W2077520869 cites W2082480141 @default.
- W2077520869 cites W2087704525 @default.
- W2077520869 cites W2088979675 @default.
- W2077520869 cites W2096510340 @default.
- W2077520869 cites W2101664201 @default.
- W2077520869 cites W2103818806 @default.
- W2077520869 cites W2105273997 @default.
- W2077520869 cites W2108471908 @default.
- W2077520869 cites W2119104009 @default.
- W2077520869 cites W2121590087 @default.
- W2077520869 cites W2137268092 @default.
- W2077520869 cites W2137882837 @default.
- W2077520869 cites W2155261478 @default.
- W2077520869 cites W2156419436 @default.
- W2077520869 cites W2157875543 @default.
- W2077520869 cites W2158196600 @default.
- W2077520869 cites W2158313020 @default.
- W2077520869 cites W2252481205 @default.
- W2077520869 cites W2911964244 @default.
- W2077520869 cites W4212883601 @default.
- W2077520869 doi "https://doi.org/10.1016/j.landurbplan.2012.06.009" @default.
- W2077520869 hasPublicationYear "2012" @default.
- W2077520869 type Work @default.
- W2077520869 sameAs 2077520869 @default.
- W2077520869 citedByCount "63" @default.
- W2077520869 countsByYear W20775208692013 @default.
- W2077520869 countsByYear W20775208692014 @default.
- W2077520869 countsByYear W20775208692015 @default.
- W2077520869 countsByYear W20775208692016 @default.
- W2077520869 countsByYear W20775208692017 @default.
- W2077520869 countsByYear W20775208692018 @default.
- W2077520869 countsByYear W20775208692019 @default.
- W2077520869 countsByYear W20775208692020 @default.
- W2077520869 countsByYear W20775208692021 @default.
- W2077520869 countsByYear W20775208692022 @default.
- W2077520869 countsByYear W20775208692023 @default.
- W2077520869 crossrefType "journal-article" @default.
- W2077520869 hasAuthorship W2077520869A5004228941 @default.
- W2077520869 hasAuthorship W2077520869A5025435630 @default.
- W2077520869 hasAuthorship W2077520869A5069161853 @default.
- W2077520869 hasConcept C105795698 @default.
- W2077520869 hasConcept C119857082 @default.
- W2077520869 hasConcept C134306372 @default.
- W2077520869 hasConcept C148483581 @default.
- W2077520869 hasConcept C149782125 @default.
- W2077520869 hasConcept C152877465 @default.
- W2077520869 hasConcept C169258074 @default.
- W2077520869 hasConcept C170964787 @default.
- W2077520869 hasConcept C178131030 @default.
- W2077520869 hasConcept C182365436 @default.
- W2077520869 hasConcept C193156294 @default.
- W2077520869 hasConcept C27574286 @default.
- W2077520869 hasConcept C2778479189 @default.
- W2077520869 hasConcept C33923547 @default.
- W2077520869 hasConcept C41008148 @default.
- W2077520869 hasConcept C6856009 @default.