Matches in SemOpenAlex for { <https://semopenalex.org/work/W20776095> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W20776095 startingPage "970" @default.
- W20776095 abstract "It is shown that optimal text compression is a harder problem than artificial intelligence as defined by Turing’s (1950) imitation game; thus compression ratio on a standard benchmark corpus could be used as an objective and quantitative alternative test for AI (Mahoney, 1999). Specifically, let L, M, and J be the probability distributions of responses chosen by a human, machine, and human judge respectively to the judge’s questions in the imitation game. The goal of AI is M = L, the machine is indistinguishable from human. But the machine wins (the judge guesses that it is human) when HJ(M) < HJ(L), where HQ(P) ≡ −Σx P(x) log Q(x) is the cross entropy of Q with respect to P. This happens when J is a poor estimate of L, meaning that the interrogator fails to anticipate the human’s responses, but even in the worst case when J = L, the machine can still win with a suboptimal solution (M ≠ L) by deterministically favoring the most likely responses over the true distribution. In contrast, optimal compression of a probabilistic language L with unknown distribution (such as English) using an estimated distribution M (an encoding of length −log2 M(x) bits for each string x) is M = L, by the discrete channel capacity theorem (Shannon, 1949). Answering questions in the Turing test (What are roses?) seems to require the same type of real-world knowledge that people use in predicting characters in a stream of natural language text (Roses are ___?), or equivalently, estimating L(x) for compression. Shannon (1951), and Cover and King (1978) established an upper bound of 1.3 bits per character (bpc) for the entropy (information content) of English narrative in a 27character alphabet (A-Z and space) using human prediction tests. No compression program has achieved this. Seven programs, including those top-rated by Gilchrist (1998) and Bell (1998) were used to compress English narrative, Alice in Wonderland (alice30.txt from the Gutenberg press, minus header) and Far from the Madding Crowd by Thomas Hardy (book1 from the Calgary corpus), after reducing both to 27 characters. The best compression was achieved by rkive 1.91b1: 1.86 bpc on alice and 1.94 on book1. Others tested (from worst to best) were compress 4.3d, pkzip 2.04e, gzip 1.2.4, ha 0.98, szip 1.05x, and boa 0.58b. All program options were set for maximum compression. Better compressors “learn”, using prior input to improve compression on subsequent input. szip was the best learner, compressing book1 to about 95% of the size of the two halves compressed separately. The first figure below shows the correlation between compression and learning. Similar results were obtained for alice. It was also found that better compressors make greater use of the syntactic and semantic constraints of English. Lexical," @default.
- W20776095 created "2016-06-24" @default.
- W20776095 creator A5040390102 @default.
- W20776095 date "1999-07-18" @default.
- W20776095 modified "2023-09-24" @default.
- W20776095 title "Text compression as a test for artificial intelligence" @default.
- W20776095 cites W158805393 @default.
- W20776095 cites W173663322 @default.
- W20776095 cites W2003453784 @default.
- W20776095 cites W2012603689 @default.
- W20776095 cites W2042541403 @default.
- W20776095 cites W2060082998 @default.
- W20776095 cites W2144679335 @default.
- W20776095 cites W2145482038 @default.
- W20776095 cites W2993383518 @default.
- W20776095 hasPublicationYear "1999" @default.
- W20776095 type Work @default.
- W20776095 sameAs 20776095 @default.
- W20776095 citedByCount "14" @default.
- W20776095 countsByYear W207760952012 @default.
- W20776095 countsByYear W207760952014 @default.
- W20776095 countsByYear W207760952017 @default.
- W20776095 countsByYear W207760952018 @default.
- W20776095 countsByYear W207760952019 @default.
- W20776095 countsByYear W207760952020 @default.
- W20776095 crossrefType "proceedings-article" @default.
- W20776095 hasAuthorship W20776095A5040390102 @default.
- W20776095 hasConcept C105795698 @default.
- W20776095 hasConcept C106301342 @default.
- W20776095 hasConcept C11413529 @default.
- W20776095 hasConcept C118615104 @default.
- W20776095 hasConcept C121332964 @default.
- W20776095 hasConcept C137293760 @default.
- W20776095 hasConcept C149441793 @default.
- W20776095 hasConcept C154945302 @default.
- W20776095 hasConcept C195324797 @default.
- W20776095 hasConcept C204321447 @default.
- W20776095 hasConcept C29248071 @default.
- W20776095 hasConcept C33923547 @default.
- W20776095 hasConcept C41008148 @default.
- W20776095 hasConcept C45374587 @default.
- W20776095 hasConcept C49937458 @default.
- W20776095 hasConcept C577917 @default.
- W20776095 hasConcept C62520636 @default.
- W20776095 hasConceptScore W20776095C105795698 @default.
- W20776095 hasConceptScore W20776095C106301342 @default.
- W20776095 hasConceptScore W20776095C11413529 @default.
- W20776095 hasConceptScore W20776095C118615104 @default.
- W20776095 hasConceptScore W20776095C121332964 @default.
- W20776095 hasConceptScore W20776095C137293760 @default.
- W20776095 hasConceptScore W20776095C149441793 @default.
- W20776095 hasConceptScore W20776095C154945302 @default.
- W20776095 hasConceptScore W20776095C195324797 @default.
- W20776095 hasConceptScore W20776095C204321447 @default.
- W20776095 hasConceptScore W20776095C29248071 @default.
- W20776095 hasConceptScore W20776095C33923547 @default.
- W20776095 hasConceptScore W20776095C41008148 @default.
- W20776095 hasConceptScore W20776095C45374587 @default.
- W20776095 hasConceptScore W20776095C49937458 @default.
- W20776095 hasConceptScore W20776095C577917 @default.
- W20776095 hasConceptScore W20776095C62520636 @default.
- W20776095 hasLocation W207760951 @default.
- W20776095 hasOpenAccess W20776095 @default.
- W20776095 hasPrimaryLocation W207760951 @default.
- W20776095 hasRelatedWork W1498206907 @default.
- W20776095 hasRelatedWork W1534506107 @default.
- W20776095 hasRelatedWork W1553200036 @default.
- W20776095 hasRelatedWork W1638203394 @default.
- W20776095 hasRelatedWork W1997404989 @default.
- W20776095 hasRelatedWork W2001771035 @default.
- W20776095 hasRelatedWork W2003382651 @default.
- W20776095 hasRelatedWork W2013391942 @default.
- W20776095 hasRelatedWork W2072410439 @default.
- W20776095 hasRelatedWork W2101493843 @default.
- W20776095 hasRelatedWork W2110381504 @default.
- W20776095 hasRelatedWork W2114485587 @default.
- W20776095 hasRelatedWork W2117703827 @default.
- W20776095 hasRelatedWork W2121863487 @default.
- W20776095 hasRelatedWork W2135625884 @default.
- W20776095 hasRelatedWork W2145482038 @default.
- W20776095 hasRelatedWork W2251410821 @default.
- W20776095 hasRelatedWork W4245645 @default.
- W20776095 hasRelatedWork W684736 @default.
- W20776095 hasRelatedWork W106021698 @default.
- W20776095 isParatext "false" @default.
- W20776095 isRetracted "false" @default.
- W20776095 magId "20776095" @default.
- W20776095 workType "article" @default.