Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077648446> ?p ?o ?g. }
- W2077648446 endingPage "296" @default.
- W2077648446 startingPage "284" @default.
- W2077648446 abstract "Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75, 150 and 225 kg ha−1 and two CO2 concentrations (380 and 550 μmol mol−1) were used to investigate changes in source–sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source–sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality." @default.
- W2077648446 created "2016-06-24" @default.
- W2077648446 creator A5066152115 @default.
- W2077648446 creator A5070779931 @default.
- W2077648446 creator A5074291156 @default.
- W2077648446 creator A5083715487 @default.
- W2077648446 date "2011-09-01" @default.
- W2077648446 modified "2023-10-17" @default.
- W2077648446 title "Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2" @default.
- W2077648446 cites W1510600814 @default.
- W2077648446 cites W1591220228 @default.
- W2077648446 cites W1945195706 @default.
- W2077648446 cites W1966680247 @default.
- W2077648446 cites W1969328793 @default.
- W2077648446 cites W1973151479 @default.
- W2077648446 cites W1979207731 @default.
- W2077648446 cites W1979934929 @default.
- W2077648446 cites W1981940476 @default.
- W2077648446 cites W1983388552 @default.
- W2077648446 cites W1985481716 @default.
- W2077648446 cites W1986905491 @default.
- W2077648446 cites W1987341599 @default.
- W2077648446 cites W1987783449 @default.
- W2077648446 cites W1987955352 @default.
- W2077648446 cites W1988773312 @default.
- W2077648446 cites W1992067712 @default.
- W2077648446 cites W1994084166 @default.
- W2077648446 cites W1998296794 @default.
- W2077648446 cites W2011735914 @default.
- W2077648446 cites W2012850835 @default.
- W2077648446 cites W2014100066 @default.
- W2077648446 cites W2017160692 @default.
- W2077648446 cites W2019517525 @default.
- W2077648446 cites W2025571449 @default.
- W2077648446 cites W2026837391 @default.
- W2077648446 cites W2029221323 @default.
- W2077648446 cites W2029699923 @default.
- W2077648446 cites W2030689372 @default.
- W2077648446 cites W2043281529 @default.
- W2077648446 cites W2055657568 @default.
- W2077648446 cites W2061512637 @default.
- W2077648446 cites W2062498293 @default.
- W2077648446 cites W2068541973 @default.
- W2077648446 cites W2071540056 @default.
- W2077648446 cites W2073944953 @default.
- W2077648446 cites W2077156488 @default.
- W2077648446 cites W2077482659 @default.
- W2077648446 cites W2078254687 @default.
- W2077648446 cites W2082627181 @default.
- W2077648446 cites W2085820858 @default.
- W2077648446 cites W2088410848 @default.
- W2077648446 cites W2089361671 @default.
- W2077648446 cites W2090981549 @default.
- W2077648446 cites W2095523948 @default.
- W2077648446 cites W2095646961 @default.
- W2077648446 cites W2096226396 @default.
- W2077648446 cites W2102947678 @default.
- W2077648446 cites W2104804688 @default.
- W2077648446 cites W2114364055 @default.
- W2077648446 cites W2119056064 @default.
- W2077648446 cites W2119899639 @default.
- W2077648446 cites W2120445928 @default.
- W2077648446 cites W2124002739 @default.
- W2077648446 cites W2125872808 @default.
- W2077648446 cites W2129563875 @default.
- W2077648446 cites W2130778970 @default.
- W2077648446 cites W2131962963 @default.
- W2077648446 cites W2134801433 @default.
- W2077648446 cites W2136775145 @default.
- W2077648446 cites W2137258838 @default.
- W2077648446 cites W2142318621 @default.
- W2077648446 cites W2142732274 @default.
- W2077648446 cites W2143276972 @default.
- W2077648446 cites W2147275368 @default.
- W2077648446 cites W2147331177 @default.
- W2077648446 cites W2152563020 @default.
- W2077648446 cites W2156673339 @default.
- W2077648446 cites W2158235738 @default.
- W2077648446 cites W2160172456 @default.
- W2077648446 cites W2161058639 @default.
- W2077648446 cites W2165139361 @default.
- W2077648446 cites W2165509261 @default.
- W2077648446 cites W2169110569 @default.
- W2077648446 cites W2169908654 @default.
- W2077648446 cites W2184271203 @default.
- W2077648446 cites W2329924585 @default.
- W2077648446 cites W4242433192 @default.
- W2077648446 cites W4243975953 @default.
- W2077648446 doi "https://doi.org/10.1016/j.envexpbot.2011.04.003" @default.
- W2077648446 hasPublicationYear "2011" @default.
- W2077648446 type Work @default.
- W2077648446 sameAs 2077648446 @default.
- W2077648446 citedByCount "33" @default.
- W2077648446 countsByYear W20776484462012 @default.
- W2077648446 countsByYear W20776484462013 @default.
- W2077648446 countsByYear W20776484462014 @default.
- W2077648446 countsByYear W20776484462015 @default.
- W2077648446 countsByYear W20776484462016 @default.