Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077692008> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2077692008 endingPage "99" @default.
- W2077692008 startingPage "81" @default.
- W2077692008 abstract "Abstract A method for obtaining approximate solutions to the standard shell-model problem, as applied to collective states, is described which exploits two features of such problems. One is the completely general mathematical feature that the Hamiltonian is a simple polynomial in the generators of a Lie group. The second is the widespread physical feature that when the matrix element of a product of generators, taken between suitable low-lying states, is evaluated by sum rule techniques, the intermediate state sums are exhausted by a few terms (collective states). Such sum rule techniques can be applied to the Lie algebra, the Casimir operators of the algebra (whose eigenvalues specify the representations appropriate to the fermion system under study), to the condition that the Hamiltonian be diagonal in the space of its eigenstates, and to the equations of motion for the generators taken between such states. In this paper the technique is applied to an exactly soluble model introduced by Meshkov, Lipkin, and Glick. It is seen that the sum rules can be cut at various levels of approximation and with sufficient care in the way this is done that the resulting systems of non-linear equations among physical matrix elements constitutes a complete (or even overcomplete but reasonably self-consistent) dynamical scheme for the computation of a specified set of physical quantities. Even the crudest such approximation gives qualitatively reasonable results right through the phase transition exhibited by the model. The best approximation carried out yields all the physical quantities associated with the lowest four eigenstates of the system, i.e. up to three phonon-states in the vibrational regime. Essentially exact results for all coupling constants are obtained for the quantities normally calculated by the random phase approximation and good values for the remaining quantities. The strength of the method is seen to be that for systems with collective modes, the complexity of its application depends only on the structure of the group studied and on the number of physical states taken into account and is independent of the total number of particles treated." @default.
- W2077692008 created "2016-06-24" @default.
- W2077692008 creator A5053281781 @default.
- W2077692008 creator A5070728861 @default.
- W2077692008 date "1969-12-01" @default.
- W2077692008 modified "2023-10-01" @default.
- W2077692008 title "The algebra of currents as a complete dynamical method in the nuclear many-body problem: Application to an exactly soluble model" @default.
- W2077692008 cites W1542475302 @default.
- W2077692008 cites W1604985223 @default.
- W2077692008 cites W1965506902 @default.
- W2077692008 cites W2016740178 @default.
- W2077692008 cites W2095483080 @default.
- W2077692008 doi "https://doi.org/10.1016/0375-9474(69)90261-9" @default.
- W2077692008 hasPublicationYear "1969" @default.
- W2077692008 type Work @default.
- W2077692008 sameAs 2077692008 @default.
- W2077692008 citedByCount "22" @default.
- W2077692008 countsByYear W20776920082021 @default.
- W2077692008 crossrefType "journal-article" @default.
- W2077692008 hasAuthorship W2077692008A5053281781 @default.
- W2077692008 hasAuthorship W2077692008A5070728861 @default.
- W2077692008 hasConcept C121332964 @default.
- W2077692008 hasConcept C126255220 @default.
- W2077692008 hasConcept C130787639 @default.
- W2077692008 hasConcept C136119220 @default.
- W2077692008 hasConcept C158693339 @default.
- W2077692008 hasConcept C202444582 @default.
- W2077692008 hasConcept C2779472767 @default.
- W2077692008 hasConcept C28826006 @default.
- W2077692008 hasConcept C33923547 @default.
- W2077692008 hasConcept C51568863 @default.
- W2077692008 hasConcept C62520636 @default.
- W2077692008 hasConceptScore W2077692008C121332964 @default.
- W2077692008 hasConceptScore W2077692008C126255220 @default.
- W2077692008 hasConceptScore W2077692008C130787639 @default.
- W2077692008 hasConceptScore W2077692008C136119220 @default.
- W2077692008 hasConceptScore W2077692008C158693339 @default.
- W2077692008 hasConceptScore W2077692008C202444582 @default.
- W2077692008 hasConceptScore W2077692008C2779472767 @default.
- W2077692008 hasConceptScore W2077692008C28826006 @default.
- W2077692008 hasConceptScore W2077692008C33923547 @default.
- W2077692008 hasConceptScore W2077692008C51568863 @default.
- W2077692008 hasConceptScore W2077692008C62520636 @default.
- W2077692008 hasIssue "1" @default.
- W2077692008 hasLocation W20776920081 @default.
- W2077692008 hasOpenAccess W2077692008 @default.
- W2077692008 hasPrimaryLocation W20776920081 @default.
- W2077692008 hasRelatedWork W1542475302 @default.
- W2077692008 hasRelatedWork W1598140475 @default.
- W2077692008 hasRelatedWork W1963694340 @default.
- W2077692008 hasRelatedWork W1972578715 @default.
- W2077692008 hasRelatedWork W1974216208 @default.
- W2077692008 hasRelatedWork W1985357355 @default.
- W2077692008 hasRelatedWork W2009170282 @default.
- W2077692008 hasRelatedWork W2011184092 @default.
- W2077692008 hasRelatedWork W2020125459 @default.
- W2077692008 hasRelatedWork W2040329088 @default.
- W2077692008 hasRelatedWork W2046920004 @default.
- W2077692008 hasRelatedWork W2054515065 @default.
- W2077692008 hasRelatedWork W2081467792 @default.
- W2077692008 hasRelatedWork W2083392578 @default.
- W2077692008 hasRelatedWork W2085407819 @default.
- W2077692008 hasRelatedWork W2095330606 @default.
- W2077692008 hasRelatedWork W2155647937 @default.
- W2077692008 hasRelatedWork W2159545349 @default.
- W2077692008 hasRelatedWork W3103599407 @default.
- W2077692008 hasRelatedWork W75661998 @default.
- W2077692008 hasVolume "139" @default.
- W2077692008 isParatext "false" @default.
- W2077692008 isRetracted "false" @default.
- W2077692008 magId "2077692008" @default.
- W2077692008 workType "article" @default.