Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077731878> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2077731878 endingPage "344" @default.
- W2077731878 startingPage "338" @default.
- W2077731878 abstract "This paper proposes a new image Multi-Instance (MI) bag generating method, which models an image with a Gaussian Mixed Model (GMM). The generated GMM is treated as an MI bag, of which the color and locally stable invariant components (SIFT) are the instances. Agglomerative Information Bottleneck clustering is employed to transform the MIL problem into single-instance learning problem so that single-instance classifiers can be used for classification. Finally, ensemble learningis involved to further enhance classifiers generalization ability. Experimental results demonstrate that the performance of the proposed framework for image recognition is superior to some common MI algorithms on average in a 5-category scene recognition task Key words: Multi-Instance Learning; Gaussian Mixed Model; AIB Clustering; image modeling; Single-Instance Bag; Ensemble Classifier; Scene Recognition" @default.
- W2077731878 created "2016-06-24" @default.
- W2077731878 creator A5056141272 @default.
- W2077731878 date "2013-09-01" @default.
- W2077731878 modified "2023-10-18" @default.
- W2077731878 title "Solving Multi-Instance Visual Scene Recognition with Classifier Ensemble Based on Unsupervised Clustering" @default.
- W2077731878 cites W1553738666 @default.
- W2077731878 cites W1973217014 @default.
- W2077731878 cites W2004646046 @default.
- W2077731878 cites W2031384358 @default.
- W2077731878 cites W2034445978 @default.
- W2077731878 cites W2074992691 @default.
- W2077731878 cites W2076752034 @default.
- W2077731878 cites W2082298348 @default.
- W2077731878 cites W2098166271 @default.
- W2077731878 cites W2110119381 @default.
- W2077731878 cites W2125407560 @default.
- W2077731878 cites W2135479674 @default.
- W2077731878 cites W2151103935 @default.
- W2077731878 cites W2163651591 @default.
- W2077731878 cites W2166289851 @default.
- W2077731878 cites W23932498 @default.
- W2077731878 doi "https://doi.org/10.4028/www.scientific.net/amm.415.338" @default.
- W2077731878 hasPublicationYear "2013" @default.
- W2077731878 type Work @default.
- W2077731878 sameAs 2077731878 @default.
- W2077731878 citedByCount "1" @default.
- W2077731878 countsByYear W20777318782019 @default.
- W2077731878 crossrefType "journal-article" @default.
- W2077731878 hasAuthorship W2077731878A5056141272 @default.
- W2077731878 hasConcept C115961682 @default.
- W2077731878 hasConcept C119857082 @default.
- W2077731878 hasConcept C153180895 @default.
- W2077731878 hasConcept C154945302 @default.
- W2077731878 hasConcept C1667742 @default.
- W2077731878 hasConcept C167611913 @default.
- W2077731878 hasConcept C189391414 @default.
- W2077731878 hasConcept C41008148 @default.
- W2077731878 hasConcept C45942800 @default.
- W2077731878 hasConcept C60008888 @default.
- W2077731878 hasConcept C61224824 @default.
- W2077731878 hasConcept C61265191 @default.
- W2077731878 hasConcept C73555534 @default.
- W2077731878 hasConcept C95623464 @default.
- W2077731878 hasConceptScore W2077731878C115961682 @default.
- W2077731878 hasConceptScore W2077731878C119857082 @default.
- W2077731878 hasConceptScore W2077731878C153180895 @default.
- W2077731878 hasConceptScore W2077731878C154945302 @default.
- W2077731878 hasConceptScore W2077731878C1667742 @default.
- W2077731878 hasConceptScore W2077731878C167611913 @default.
- W2077731878 hasConceptScore W2077731878C189391414 @default.
- W2077731878 hasConceptScore W2077731878C41008148 @default.
- W2077731878 hasConceptScore W2077731878C45942800 @default.
- W2077731878 hasConceptScore W2077731878C60008888 @default.
- W2077731878 hasConceptScore W2077731878C61224824 @default.
- W2077731878 hasConceptScore W2077731878C61265191 @default.
- W2077731878 hasConceptScore W2077731878C73555534 @default.
- W2077731878 hasConceptScore W2077731878C95623464 @default.
- W2077731878 hasLocation W20777318781 @default.
- W2077731878 hasOpenAccess W2077731878 @default.
- W2077731878 hasPrimaryLocation W20777318781 @default.
- W2077731878 hasRelatedWork W1789705271 @default.
- W2077731878 hasRelatedWork W2009824857 @default.
- W2077731878 hasRelatedWork W2345915074 @default.
- W2077731878 hasRelatedWork W2399159263 @default.
- W2077731878 hasRelatedWork W2563096758 @default.
- W2077731878 hasRelatedWork W2729514902 @default.
- W2077731878 hasRelatedWork W2936330088 @default.
- W2077731878 hasRelatedWork W3076930281 @default.
- W2077731878 hasRelatedWork W3080336085 @default.
- W2077731878 hasRelatedWork W3212974055 @default.
- W2077731878 hasVolume "415" @default.
- W2077731878 isParatext "false" @default.
- W2077731878 isRetracted "false" @default.
- W2077731878 magId "2077731878" @default.
- W2077731878 workType "article" @default.