Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077734580> ?p ?o ?g. }
- W2077734580 endingPage "1697" @default.
- W2077734580 startingPage "1688" @default.
- W2077734580 abstract "Under a given set of conditions, nanomaterials can crystallize into structures that are entirely inconsistent with the bulk material and may adopt a range of faceted morphologies that depend on the particle size. A size-dependent phase diagram, a graphical representation of the chemical equilibrium, offers a convenient way to describe this relationship among the size, morphology, and thermodynamic environment. Although creating such a diagram from conventional experiments is extremely challenging (and costly), theory and simulation allow us to use virtual experiments to control the temperature, pressure, size, structure and composition independently.Although the stability and morphology of gold nanoparticles has been add-ressed numerous times in recent years, a critical examination of the literature reveals a number of glaring contradictions. Typically gold nanoparticles present as multiply-twinned structures, such as icosahedra and decahedra, or faceted monocrystalline (fcc) shapes, such as truncated octahedra and cuboctahedra. All of these shapes are dominated by various fractions of {111} and {100} facets, which have different surface atom densities, electronic structure, bonding, chemical reactivities, and thermodynamic properties. Although many of the computational (and theoretical) studies agree on the energetic order of the different motifs and shapes, they do not necessarily agree with experimental observations. When discrepancies arise between experimental observations and thermodynamic modeling, they are often attributed to kinetics. But only recently could researchers analytically compare the kinetics and thermodynamics of faceted nanoparticles.In this Account, we follow a theoretical study of the size, shape, and structure of nanogold. We systematically explore why certain shapes are expected at different sizes and (more importantly) why others are actually observed. Icosahedra are only thermodynamically preferred at small sizes, but we find that they are the most frequently observed structures at larger sizes because they are kinetically stable (and coarsen more rapidly). In contrast, although the phase diagram correctly predicts that other motifs will emerge at larger sizes, it overestimates the frequency of those observations. These results suggest either a competition or collaboration between the kinetic and thermodynamic influences.We can understand this interaction between influences if we consider the change in shape and the change in size over time. We then use the outputs of the kinetic model as inputs for the thermodynamic model to plot the thermodynamic stability as a function of time. This comparison confirms that decahedra emerge through a combination of kinetics and thermodynamics, and that the fcc shapes are repressed due to an energetic penalty associated with the significant departure from the thermodynamically preferred shape. The infrequent observation of the fcc structures is governed by thermodynamics alone." @default.
- W2077734580 created "2016-06-24" @default.
- W2077734580 creator A5039459434 @default.
- W2077734580 date "2012-06-15" @default.
- W2077734580 modified "2023-10-08" @default.
- W2077734580 title "Direct Comparison of Kinetic and Thermodynamic Influences on Gold Nanomorphology" @default.
- W2077734580 cites W1584114617 @default.
- W2077734580 cites W1692516583 @default.
- W2077734580 cites W1965571863 @default.
- W2077734580 cites W1968959387 @default.
- W2077734580 cites W1987886604 @default.
- W2077734580 cites W1992668705 @default.
- W2077734580 cites W1993357801 @default.
- W2077734580 cites W1996139192 @default.
- W2077734580 cites W1996721015 @default.
- W2077734580 cites W1997959744 @default.
- W2077734580 cites W1998774808 @default.
- W2077734580 cites W1999081738 @default.
- W2077734580 cites W2008364815 @default.
- W2077734580 cites W2011437524 @default.
- W2077734580 cites W2012783859 @default.
- W2077734580 cites W2015305956 @default.
- W2077734580 cites W2015746312 @default.
- W2077734580 cites W2017589157 @default.
- W2077734580 cites W2017748530 @default.
- W2077734580 cites W2018529914 @default.
- W2077734580 cites W2022308914 @default.
- W2077734580 cites W2025002140 @default.
- W2077734580 cites W2030289554 @default.
- W2077734580 cites W2041036661 @default.
- W2077734580 cites W2052566608 @default.
- W2077734580 cites W2054828806 @default.
- W2077734580 cites W2055222641 @default.
- W2077734580 cites W2056458570 @default.
- W2077734580 cites W2066384800 @default.
- W2077734580 cites W2066868575 @default.
- W2077734580 cites W2071339225 @default.
- W2077734580 cites W2071715392 @default.
- W2077734580 cites W2077228161 @default.
- W2077734580 cites W2077386703 @default.
- W2077734580 cites W2078215535 @default.
- W2077734580 cites W2079471411 @default.
- W2077734580 cites W2081090017 @default.
- W2077734580 cites W2081608928 @default.
- W2077734580 cites W2087411908 @default.
- W2077734580 cites W2090857004 @default.
- W2077734580 cites W2092188508 @default.
- W2077734580 cites W2093827687 @default.
- W2077734580 cites W2094729257 @default.
- W2077734580 cites W2103191961 @default.
- W2077734580 cites W2117411846 @default.
- W2077734580 cites W2122085202 @default.
- W2077734580 cites W2124349166 @default.
- W2077734580 cites W2129998516 @default.
- W2077734580 cites W2135261637 @default.
- W2077734580 cites W2154955603 @default.
- W2077734580 cites W2155566599 @default.
- W2077734580 cites W2171514131 @default.
- W2077734580 cites W2611473615 @default.
- W2077734580 doi "https://doi.org/10.1021/ar3000184" @default.
- W2077734580 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22704731" @default.
- W2077734580 hasPublicationYear "2012" @default.
- W2077734580 type Work @default.
- W2077734580 sameAs 2077734580 @default.
- W2077734580 citedByCount "67" @default.
- W2077734580 countsByYear W20777345802013 @default.
- W2077734580 countsByYear W20777345802014 @default.
- W2077734580 countsByYear W20777345802015 @default.
- W2077734580 countsByYear W20777345802016 @default.
- W2077734580 countsByYear W20777345802017 @default.
- W2077734580 countsByYear W20777345802018 @default.
- W2077734580 countsByYear W20777345802019 @default.
- W2077734580 countsByYear W20777345802020 @default.
- W2077734580 countsByYear W20777345802021 @default.
- W2077734580 countsByYear W20777345802022 @default.
- W2077734580 countsByYear W20777345802023 @default.
- W2077734580 crossrefType "journal-article" @default.
- W2077734580 hasAuthorship W2077734580A5039459434 @default.
- W2077734580 hasConcept C121332964 @default.
- W2077734580 hasConcept C138631740 @default.
- W2077734580 hasConcept C148898269 @default.
- W2077734580 hasConcept C149635348 @default.
- W2077734580 hasConcept C155672457 @default.
- W2077734580 hasConcept C159467904 @default.
- W2077734580 hasConcept C171250308 @default.
- W2077734580 hasConcept C178790620 @default.
- W2077734580 hasConcept C185592680 @default.
- W2077734580 hasConcept C186399102 @default.
- W2077734580 hasConcept C192562407 @default.
- W2077734580 hasConcept C41008148 @default.
- W2077734580 hasConcept C44280652 @default.
- W2077734580 hasConcept C58312451 @default.
- W2077734580 hasConcept C62520636 @default.
- W2077734580 hasConcept C85906118 @default.
- W2077734580 hasConcept C97355855 @default.
- W2077734580 hasConceptScore W2077734580C121332964 @default.
- W2077734580 hasConceptScore W2077734580C138631740 @default.
- W2077734580 hasConceptScore W2077734580C148898269 @default.