Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077771185> ?p ?o ?g. }
- W2077771185 endingPage "347" @default.
- W2077771185 startingPage "338" @default.
- W2077771185 abstract "Promising results have been obtained in recent years in the use of high-resolution X-band stereo SAR satellite images (with the spatial resolution being in order of meters) in the extraction of elevation data. In the case of forested areas, the extracted elevation values appear to be somewhere between the ground surface and the top of the canopy, depending on the forest characteristics. If the ground surface elevations are known by using a Digital Terrain Model derived from Airborne Laser Scanning surveys, it is possible to obtain information related to forest resources. To the best of our knowledge, this paper, presents the first attempt to obtain forest variables at plot level based on TerraSAR-X stereo SAR images (non-interferometric data). The study set consisted of 109 circular test plots for which forest variables were observed by performing tree-specific measurements. The statistical features were calculated for each test plot from the elevation values extracted from stereo SAR data. This was followed by predicting field-observed plot-level forest variables from the features derived from stereo SAR data using the Nearest Neighbors approach which employs the Random Forest technique in selection of the nearest neighbors. The relative errors (RMSE%) for predicting the stem volume, basal area, mean forest canopy height, and mean diameter values were 34.0%, 29.0%, 14.0%, and 19.7%, respectively. The results indicate that there was no clear saturation level in stem volume estimation. In this case study, stem volumes were predicted up to about 400 m 3 /ha. In the light of these results, stereo SAR data appears to be an interesting remote-sensing technique for future forest inventories. For example, stereo SAR data could have high potential in forest inventories as the SAR-based features can be adapted to the methods currently used in inventories. ► We used TerraSAR-X stereo SAR images in predicting plot-level forest variables. ► Extracted point clouds contain information about forest resources. ► The relative error in stem volume prediction was 34.9%. ► We believe high-resolution stereo SAR data is usable for forest inventories." @default.
- W2077771185 created "2016-06-24" @default.
- W2077771185 creator A5011830111 @default.
- W2077771185 creator A5033042071 @default.
- W2077771185 creator A5047838080 @default.
- W2077771185 creator A5061837252 @default.
- W2077771185 creator A5068228319 @default.
- W2077771185 date "2012-02-01" @default.
- W2077771185 modified "2023-09-25" @default.
- W2077771185 title "Prediction of plot-level forest variables using TerraSAR-X stereo SAR data" @default.
- W2077771185 cites W1965393380 @default.
- W2077771185 cites W1969245801 @default.
- W2077771185 cites W1992541517 @default.
- W2077771185 cites W2004349581 @default.
- W2077771185 cites W2006803898 @default.
- W2077771185 cites W2008926204 @default.
- W2077771185 cites W2019126302 @default.
- W2077771185 cites W2023854732 @default.
- W2077771185 cites W2071215415 @default.
- W2077771185 cites W2073768849 @default.
- W2077771185 cites W2100165672 @default.
- W2077771185 cites W2105781415 @default.
- W2077771185 cites W2119709769 @default.
- W2077771185 cites W2123920486 @default.
- W2077771185 cites W2126840481 @default.
- W2077771185 cites W2129391498 @default.
- W2077771185 cites W2131472136 @default.
- W2077771185 cites W2133160971 @default.
- W2077771185 cites W2145442946 @default.
- W2077771185 cites W2147555557 @default.
- W2077771185 cites W2149304263 @default.
- W2077771185 cites W2153534477 @default.
- W2077771185 cites W2157856973 @default.
- W2077771185 cites W2160281271 @default.
- W2077771185 cites W2163241395 @default.
- W2077771185 cites W2169095385 @default.
- W2077771185 cites W2171009093 @default.
- W2077771185 cites W2911964244 @default.
- W2077771185 doi "https://doi.org/10.1016/j.rse.2011.10.008" @default.
- W2077771185 hasPublicationYear "2012" @default.
- W2077771185 type Work @default.
- W2077771185 sameAs 2077771185 @default.
- W2077771185 citedByCount "68" @default.
- W2077771185 countsByYear W20777711852012 @default.
- W2077771185 countsByYear W20777711852013 @default.
- W2077771185 countsByYear W20777711852014 @default.
- W2077771185 countsByYear W20777711852015 @default.
- W2077771185 countsByYear W20777711852016 @default.
- W2077771185 countsByYear W20777711852017 @default.
- W2077771185 countsByYear W20777711852018 @default.
- W2077771185 countsByYear W20777711852019 @default.
- W2077771185 countsByYear W20777711852020 @default.
- W2077771185 countsByYear W20777711852021 @default.
- W2077771185 countsByYear W20777711852022 @default.
- W2077771185 countsByYear W20777711852023 @default.
- W2077771185 crossrefType "journal-article" @default.
- W2077771185 hasAuthorship W2077771185A5011830111 @default.
- W2077771185 hasAuthorship W2077771185A5033042071 @default.
- W2077771185 hasAuthorship W2077771185A5047838080 @default.
- W2077771185 hasAuthorship W2077771185A5061837252 @default.
- W2077771185 hasAuthorship W2077771185A5068228319 @default.
- W2077771185 hasConcept C101000010 @default.
- W2077771185 hasConcept C105795698 @default.
- W2077771185 hasConcept C127313418 @default.
- W2077771185 hasConcept C147103442 @default.
- W2077771185 hasConcept C154945302 @default.
- W2077771185 hasConcept C161840515 @default.
- W2077771185 hasConcept C166957645 @default.
- W2077771185 hasConcept C169258074 @default.
- W2077771185 hasConcept C181843262 @default.
- W2077771185 hasConcept C205649164 @default.
- W2077771185 hasConcept C22286887 @default.
- W2077771185 hasConcept C2524010 @default.
- W2077771185 hasConcept C28631016 @default.
- W2077771185 hasConcept C33923547 @default.
- W2077771185 hasConcept C37054046 @default.
- W2077771185 hasConcept C39432304 @default.
- W2077771185 hasConcept C39807119 @default.
- W2077771185 hasConcept C41008148 @default.
- W2077771185 hasConcept C51399673 @default.
- W2077771185 hasConcept C54286561 @default.
- W2077771185 hasConcept C58489278 @default.
- W2077771185 hasConcept C58640448 @default.
- W2077771185 hasConcept C62649853 @default.
- W2077771185 hasConcept C87360688 @default.
- W2077771185 hasConcept C91354502 @default.
- W2077771185 hasConcept C97137747 @default.
- W2077771185 hasConceptScore W2077771185C101000010 @default.
- W2077771185 hasConceptScore W2077771185C105795698 @default.
- W2077771185 hasConceptScore W2077771185C127313418 @default.
- W2077771185 hasConceptScore W2077771185C147103442 @default.
- W2077771185 hasConceptScore W2077771185C154945302 @default.
- W2077771185 hasConceptScore W2077771185C161840515 @default.
- W2077771185 hasConceptScore W2077771185C166957645 @default.
- W2077771185 hasConceptScore W2077771185C169258074 @default.
- W2077771185 hasConceptScore W2077771185C181843262 @default.
- W2077771185 hasConceptScore W2077771185C205649164 @default.
- W2077771185 hasConceptScore W2077771185C22286887 @default.