Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077772897> ?p ?o ?g. }
- W2077772897 endingPage "1113" @default.
- W2077772897 startingPage "1099" @default.
- W2077772897 abstract "A novel range-free localization algorithm based on the multidimensional support vector regression (MSVR) is proposed in this paper. The range-free localization problem is formulated as a multidimensional regression problem, and a new MSVR training method is proposed to solve the regression problem. Unlike standard support vector regression, the proposed MSVR allows multiple outputs and localizes the sensors without resorting to multilateration. The training of the MSVR is formulated directly in primal space and it can be solved in two ways. First, it is formulated as a second-order cone programming and trained by convex optimization. Second, its own training method is developed based on the Newton-Raphson method. A simulation is conducted for both isotropic and anisotropic networks, and the proposed method exhibits excellent and robust performance in both isotropic and anisotropic networks." @default.
- W2077772897 created "2016-06-24" @default.
- W2077772897 creator A5004326966 @default.
- W2077772897 creator A5044912860 @default.
- W2077772897 creator A5065415014 @default.
- W2077772897 date "2013-07-01" @default.
- W2077772897 modified "2023-10-17" @default.
- W2077772897 title "Novel Range-Free Localization Based on Multidimensional Support Vector Regression Trained in the Primal Space" @default.
- W2077772897 cites W1970679066 @default.
- W2077772897 cites W1978742041 @default.
- W2077772897 cites W1990938413 @default.
- W2077772897 cites W2002355073 @default.
- W2077772897 cites W2006805041 @default.
- W2077772897 cites W2011777324 @default.
- W2077772897 cites W2026131661 @default.
- W2077772897 cites W2037734629 @default.
- W2077772897 cites W2047176734 @default.
- W2077772897 cites W2060281964 @default.
- W2077772897 cites W2061607927 @default.
- W2077772897 cites W2069601023 @default.
- W2077772897 cites W2086867325 @default.
- W2077772897 cites W2094159870 @default.
- W2077772897 cites W2097334502 @default.
- W2077772897 cites W2100465929 @default.
- W2077772897 cites W2100796177 @default.
- W2077772897 cites W2101888056 @default.
- W2077772897 cites W2105956919 @default.
- W2077772897 cites W2111072639 @default.
- W2077772897 cites W2111336388 @default.
- W2077772897 cites W2112175875 @default.
- W2077772897 cites W2116618388 @default.
- W2077772897 cites W2117384472 @default.
- W2077772897 cites W2122040390 @default.
- W2077772897 cites W2127949150 @default.
- W2077772897 cites W2130420190 @default.
- W2077772897 cites W2135597565 @default.
- W2077772897 cites W2141695047 @default.
- W2077772897 cites W2145729159 @default.
- W2077772897 cites W2147898188 @default.
- W2077772897 cites W2160566248 @default.
- W2077772897 cites W2165614057 @default.
- W2077772897 cites W2166237942 @default.
- W2077772897 cites W4239510810 @default.
- W2077772897 cites W4250589301 @default.
- W2077772897 doi "https://doi.org/10.1109/tnnls.2013.2250996" @default.
- W2077772897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808524" @default.
- W2077772897 hasPublicationYear "2013" @default.
- W2077772897 type Work @default.
- W2077772897 sameAs 2077772897 @default.
- W2077772897 citedByCount "45" @default.
- W2077772897 countsByYear W20777728972013 @default.
- W2077772897 countsByYear W20777728972014 @default.
- W2077772897 countsByYear W20777728972015 @default.
- W2077772897 countsByYear W20777728972016 @default.
- W2077772897 countsByYear W20777728972017 @default.
- W2077772897 countsByYear W20777728972018 @default.
- W2077772897 countsByYear W20777728972019 @default.
- W2077772897 countsByYear W20777728972020 @default.
- W2077772897 countsByYear W20777728972021 @default.
- W2077772897 countsByYear W20777728972022 @default.
- W2077772897 crossrefType "journal-article" @default.
- W2077772897 hasAuthorship W2077772897A5004326966 @default.
- W2077772897 hasAuthorship W2077772897A5044912860 @default.
- W2077772897 hasAuthorship W2077772897A5065415014 @default.
- W2077772897 hasConcept C105795698 @default.
- W2077772897 hasConcept C112680207 @default.
- W2077772897 hasConcept C11413529 @default.
- W2077772897 hasConcept C121332964 @default.
- W2077772897 hasConcept C12267149 @default.
- W2077772897 hasConcept C126255220 @default.
- W2077772897 hasConcept C127413603 @default.
- W2077772897 hasConcept C146978453 @default.
- W2077772897 hasConcept C154945302 @default.
- W2077772897 hasConcept C157972887 @default.
- W2077772897 hasConcept C184050105 @default.
- W2077772897 hasConcept C204323151 @default.
- W2077772897 hasConcept C2524010 @default.
- W2077772897 hasConcept C33923547 @default.
- W2077772897 hasConcept C41008148 @default.
- W2077772897 hasConcept C62520636 @default.
- W2077772897 hasConcept C83546350 @default.
- W2077772897 hasConceptScore W2077772897C105795698 @default.
- W2077772897 hasConceptScore W2077772897C112680207 @default.
- W2077772897 hasConceptScore W2077772897C11413529 @default.
- W2077772897 hasConceptScore W2077772897C121332964 @default.
- W2077772897 hasConceptScore W2077772897C12267149 @default.
- W2077772897 hasConceptScore W2077772897C126255220 @default.
- W2077772897 hasConceptScore W2077772897C127413603 @default.
- W2077772897 hasConceptScore W2077772897C146978453 @default.
- W2077772897 hasConceptScore W2077772897C154945302 @default.
- W2077772897 hasConceptScore W2077772897C157972887 @default.
- W2077772897 hasConceptScore W2077772897C184050105 @default.
- W2077772897 hasConceptScore W2077772897C204323151 @default.
- W2077772897 hasConceptScore W2077772897C2524010 @default.
- W2077772897 hasConceptScore W2077772897C33923547 @default.
- W2077772897 hasConceptScore W2077772897C41008148 @default.
- W2077772897 hasConceptScore W2077772897C62520636 @default.
- W2077772897 hasConceptScore W2077772897C83546350 @default.