Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077777509> ?p ?o ?g. }
- W2077777509 endingPage "1739" @default.
- W2077777509 startingPage "1727" @default.
- W2077777509 abstract "Models are presented for the physical processes that occur in the formation of pyroclastic flows generated by the gravitational collapse of a vertical eruption column. The main controlling parameters are considered to be the vent radius (R), gas content (N), and initial velocity (W) of the gas. For the ranges R = 50 to 600 m, N = 0.5 to 5% gas, and W = 200 to 600 m/s, column collapse occurs at heights between 0.6 and 9.0 km above the vent, and the initialvelocities of the flows range from 60 to 310 m/s. The eruption column collapse is modeled as an inverted turbulent jet, modified by including expressions for the efficiency of heat transfer between air and small pyroclasts. Entrainment of air during the collapse can result in initial cooling of the flow by up to 350°C. The variation in the amount of cooling is considered toaccount for the considerable ranges of emplacement temperatures and the widely differing degrees of welding observed in different ignimbrites. High emplacement temperatures are favored by eruption columns with low gas contents and low gas velocities, whereas low emplacement temperatures are favored by eruption columns with high gas velocities and high gas contents. The initial stages of flow are modeled as a highly turbulent, low‐particle‐concentration density current. Numerical solutions of the turbulent stages of flow are presented assuming uniform radial spreading from a central source (the vent). Flows from large eruptions may still have velocities of up to 100 m/s at distances of tens of kilometers from the source. The methods have also been applied to uphill flow and demonstrate that flows produced at high volume rates of eruption can surmount topographic barriers of several hundred meters at distances of several tens ofkilometers from the vent and explain the spectacular mobility of some large pyroclastic flows.Turbulent suspension in a gas flow with a low concentration of particles is not a viable mechanism of particle transport, as many of the clasts (about 1 mm) found in the deposits have terminal velocities well above the shearing stress velocities of even a rapidly moving gas flow. (v* = 1 to 12 m/s). The flows are deduced to segregate into a high‐concentration basal zone within a few kilometers of the vent, as larger clasts settle to the base of the flows. Fines are thought to be generated by crushing within the high‐concentration basal zone and are fluidized by exsolving gases to produce a pyroclastic flow with high concentrations of fluidized particles. The upper dilute part of the flow and the fine ash elutriated by fluidization contribute to the formation of widely dispersed ash fall deposits which are as voluminous as theassociated ignimbrite. The flows are capable of transporting clasts of several centimeters or tens of centimeters to tens of kilometers distance. The motion of the dense lower part (the pyroclastic flow) disassociates itself from the upper turbulent cloud of fine ash and gas, whicheventually mixes with the atmosphere sufficiently to form a convective plume." @default.
- W2077777509 created "2016-06-24" @default.
- W2077777509 creator A5026147972 @default.
- W2077777509 creator A5084424725 @default.
- W2077777509 creator A5084557130 @default.
- W2077777509 date "1978-04-10" @default.
- W2077777509 modified "2023-10-15" @default.
- W2077777509 title "Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse" @default.
- W2077777509 cites W1973822041 @default.
- W2077777509 cites W1978268847 @default.
- W2077777509 cites W1978831496 @default.
- W2077777509 cites W1979169710 @default.
- W2077777509 cites W1983954259 @default.
- W2077777509 cites W1993912253 @default.
- W2077777509 cites W1995304273 @default.
- W2077777509 cites W2012397486 @default.
- W2077777509 cites W2018743105 @default.
- W2077777509 cites W2021660018 @default.
- W2077777509 cites W2034106901 @default.
- W2077777509 cites W2035464017 @default.
- W2077777509 cites W2039154001 @default.
- W2077777509 cites W2044096474 @default.
- W2077777509 cites W2045692907 @default.
- W2077777509 cites W2062138060 @default.
- W2077777509 cites W2065621884 @default.
- W2077777509 cites W2069952209 @default.
- W2077777509 cites W2074430776 @default.
- W2077777509 cites W2075065807 @default.
- W2077777509 cites W2078204357 @default.
- W2077777509 cites W2079253170 @default.
- W2077777509 cites W2081337474 @default.
- W2077777509 cites W2084091793 @default.
- W2077777509 cites W2089626575 @default.
- W2077777509 cites W2090671954 @default.
- W2077777509 cites W2091405162 @default.
- W2077777509 cites W2093856018 @default.
- W2077777509 cites W2095076839 @default.
- W2077777509 cites W2122122894 @default.
- W2077777509 cites W2125417480 @default.
- W2077777509 cites W2131516632 @default.
- W2077777509 cites W2263097087 @default.
- W2077777509 cites W2312666490 @default.
- W2077777509 cites W4250210933 @default.
- W2077777509 cites W4252307060 @default.
- W2077777509 doi "https://doi.org/10.1029/jb083ib04p01727" @default.
- W2077777509 hasPublicationYear "1978" @default.
- W2077777509 type Work @default.
- W2077777509 sameAs 2077777509 @default.
- W2077777509 citedByCount "273" @default.
- W2077777509 countsByYear W20777775092012 @default.
- W2077777509 countsByYear W20777775092013 @default.
- W2077777509 countsByYear W20777775092014 @default.
- W2077777509 countsByYear W20777775092015 @default.
- W2077777509 countsByYear W20777775092016 @default.
- W2077777509 countsByYear W20777775092017 @default.
- W2077777509 countsByYear W20777775092018 @default.
- W2077777509 countsByYear W20777775092019 @default.
- W2077777509 countsByYear W20777775092020 @default.
- W2077777509 countsByYear W20777775092021 @default.
- W2077777509 countsByYear W20777775092022 @default.
- W2077777509 countsByYear W20777775092023 @default.
- W2077777509 crossrefType "journal-article" @default.
- W2077777509 hasAuthorship W2077777509A5026147972 @default.
- W2077777509 hasAuthorship W2077777509A5084424725 @default.
- W2077777509 hasAuthorship W2077777509A5084557130 @default.
- W2077777509 hasConcept C120806208 @default.
- W2077777509 hasConcept C121332964 @default.
- W2077777509 hasConcept C127313418 @default.
- W2077777509 hasConcept C146348940 @default.
- W2077777509 hasConcept C165205528 @default.
- W2077777509 hasConcept C196558001 @default.
- W2077777509 hasConcept C38349280 @default.
- W2077777509 hasConcept C57879066 @default.
- W2077777509 hasConcept C95869378 @default.
- W2077777509 hasConceptScore W2077777509C120806208 @default.
- W2077777509 hasConceptScore W2077777509C121332964 @default.
- W2077777509 hasConceptScore W2077777509C127313418 @default.
- W2077777509 hasConceptScore W2077777509C146348940 @default.
- W2077777509 hasConceptScore W2077777509C165205528 @default.
- W2077777509 hasConceptScore W2077777509C196558001 @default.
- W2077777509 hasConceptScore W2077777509C38349280 @default.
- W2077777509 hasConceptScore W2077777509C57879066 @default.
- W2077777509 hasConceptScore W2077777509C95869378 @default.
- W2077777509 hasIssue "B4" @default.
- W2077777509 hasLocation W20777775091 @default.
- W2077777509 hasOpenAccess W2077777509 @default.
- W2077777509 hasPrimaryLocation W20777775091 @default.
- W2077777509 hasRelatedWork W1900783616 @default.
- W2077777509 hasRelatedWork W1984810944 @default.
- W2077777509 hasRelatedWork W1994126491 @default.
- W2077777509 hasRelatedWork W2011110295 @default.
- W2077777509 hasRelatedWork W2066542234 @default.
- W2077777509 hasRelatedWork W2084091793 @default.
- W2077777509 hasRelatedWork W2273520013 @default.
- W2077777509 hasRelatedWork W26429512 @default.
- W2077777509 hasRelatedWork W4296365164 @default.
- W2077777509 hasRelatedWork W4381033743 @default.
- W2077777509 hasVolume "83" @default.