Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077792904> ?p ?o ?g. }
- W2077792904 endingPage "4669" @default.
- W2077792904 startingPage "4653" @default.
- W2077792904 abstract "Morphological profiles (MPs) are a useful tool for remotely sensed image classification. These profiles are constructed on a base image that can be a single band of a multicomponent remote sensing image. Principal component analysis (PCA) has been used to provide other base images to construct MPs in high-dimensional remote sensing scenes such as hyperspectral images [e.g., by deriving the first principal components (PCs) and building the MPs on the first few components]. In this paper, we discuss several strategies for producing the base images for MPs, and further categorize the considered methods into four classes: linear, nonlinear, manifold learning-based, and multilinear transformation-based. It is found that the multilinear PCA (MPCA) is a powerful approach for base image extraction. That is because it is a tensor-based feature representation approach, which is able to simultaneously exploit the spectral-spatial correlation between neighboring pixels. We also show that independent component analysis (ICA) is more effective for constructing base images than PCA. Another important contribution of this paper is a new concept of multiple MPs (MMPs), aimed at synthesizing the spectral-spatial information extracted from the multicomponent base images, and further enhancing the classification accuracy of MPs. Moreover, we propose two different strategies to interpret the newly proposed MMPs by considering their hyperdimensional feature space: decision fusion and sparse classifier based on multinomial logistic regression (MLR). Experiments conducted on three well-known hyperspectral datasets are used to quantitatively assess the accuracy of different algorithms." @default.
- W2077792904 created "2016-06-24" @default.
- W2077792904 creator A5002687387 @default.
- W2077792904 creator A5031729932 @default.
- W2077792904 creator A5036283525 @default.
- W2077792904 creator A5050760333 @default.
- W2077792904 creator A5054292278 @default.
- W2077792904 creator A5066135984 @default.
- W2077792904 creator A5085291503 @default.
- W2077792904 date "2014-12-01" @default.
- W2077792904 modified "2023-10-17" @default.
- W2077792904 title "Multiple Morphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification" @default.
- W2077792904 cites W1522547150 @default.
- W2077792904 cites W1571401318 @default.
- W2077792904 cites W1779325231 @default.
- W2077792904 cites W1902027874 @default.
- W2077792904 cites W1974211415 @default.
- W2077792904 cites W1974981350 @default.
- W2077792904 cites W1975610128 @default.
- W2077792904 cites W1984288883 @default.
- W2077792904 cites W1985973695 @default.
- W2077792904 cites W1992961908 @default.
- W2077792904 cites W1995333990 @default.
- W2077792904 cites W2001298023 @default.
- W2077792904 cites W2035168298 @default.
- W2077792904 cites W2041227601 @default.
- W2077792904 cites W2043665634 @default.
- W2077792904 cites W2053186076 @default.
- W2077792904 cites W2067532478 @default.
- W2077792904 cites W2083541351 @default.
- W2077792904 cites W2089298795 @default.
- W2077792904 cites W2098622092 @default.
- W2077792904 cites W2101365302 @default.
- W2077792904 cites W2101837437 @default.
- W2077792904 cites W2111282613 @default.
- W2077792904 cites W2113464037 @default.
- W2077792904 cites W2114819256 @default.
- W2077792904 cites W2115451191 @default.
- W2077792904 cites W2127199143 @default.
- W2077792904 cites W2138875721 @default.
- W2077792904 cites W2141200867 @default.
- W2077792904 cites W2143354507 @default.
- W2077792904 cites W2146571341 @default.
- W2077792904 cites W2149980531 @default.
- W2077792904 cites W2151689047 @default.
- W2077792904 cites W2154905357 @default.
- W2077792904 cites W2156116978 @default.
- W2077792904 cites W2157840858 @default.
- W2077792904 cites W2159070926 @default.
- W2077792904 cites W2159611475 @default.
- W2077792904 cites W2167217202 @default.
- W2077792904 cites W2505399031 @default.
- W2077792904 cites W2624213918 @default.
- W2077792904 doi "https://doi.org/10.1109/jstars.2014.2342281" @default.
- W2077792904 hasPublicationYear "2014" @default.
- W2077792904 type Work @default.
- W2077792904 sameAs 2077792904 @default.
- W2077792904 citedByCount "54" @default.
- W2077792904 countsByYear W20777929042014 @default.
- W2077792904 countsByYear W20777929042015 @default.
- W2077792904 countsByYear W20777929042016 @default.
- W2077792904 countsByYear W20777929042017 @default.
- W2077792904 countsByYear W20777929042018 @default.
- W2077792904 countsByYear W20777929042019 @default.
- W2077792904 countsByYear W20777929042020 @default.
- W2077792904 countsByYear W20777929042021 @default.
- W2077792904 countsByYear W20777929042022 @default.
- W2077792904 countsByYear W20777929042023 @default.
- W2077792904 crossrefType "journal-article" @default.
- W2077792904 hasAuthorship W2077792904A5002687387 @default.
- W2077792904 hasAuthorship W2077792904A5031729932 @default.
- W2077792904 hasAuthorship W2077792904A5036283525 @default.
- W2077792904 hasAuthorship W2077792904A5050760333 @default.
- W2077792904 hasAuthorship W2077792904A5054292278 @default.
- W2077792904 hasAuthorship W2077792904A5066135984 @default.
- W2077792904 hasAuthorship W2077792904A5085291503 @default.
- W2077792904 hasConcept C153180895 @default.
- W2077792904 hasConcept C154945302 @default.
- W2077792904 hasConcept C159078339 @default.
- W2077792904 hasConcept C160633673 @default.
- W2077792904 hasConcept C202444582 @default.
- W2077792904 hasConcept C27438332 @default.
- W2077792904 hasConcept C31972630 @default.
- W2077792904 hasConcept C33923547 @default.
- W2077792904 hasConcept C41008148 @default.
- W2077792904 hasConcept C52622490 @default.
- W2077792904 hasConcept C84392682 @default.
- W2077792904 hasConceptScore W2077792904C153180895 @default.
- W2077792904 hasConceptScore W2077792904C154945302 @default.
- W2077792904 hasConceptScore W2077792904C159078339 @default.
- W2077792904 hasConceptScore W2077792904C160633673 @default.
- W2077792904 hasConceptScore W2077792904C202444582 @default.
- W2077792904 hasConceptScore W2077792904C27438332 @default.
- W2077792904 hasConceptScore W2077792904C31972630 @default.
- W2077792904 hasConceptScore W2077792904C33923547 @default.
- W2077792904 hasConceptScore W2077792904C41008148 @default.
- W2077792904 hasConceptScore W2077792904C52622490 @default.
- W2077792904 hasConceptScore W2077792904C84392682 @default.