Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077796887> ?p ?o ?g. }
- W2077796887 endingPage "222" @default.
- W2077796887 startingPage "1" @default.
- W2077796887 abstract "This article is focused on the performance evaluation of linear codes under optimal maximum-likelihood (ML) decoding. Though the ML decoding algorithm is prohibitively complex for most practical codes, their performance analysis under ML decoding allows to predict their performance without resorting to computer simulations. It also provides a benchmark for testing the sub-optimality of iterative (or other practical) decoding algorithms. This analysis also establishes the goodness of linear codes (or ensembles), determined by the gap between their achievable rates under optimal ML decoding and information theoretical limits. In this article, upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, we discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, we address de Caen's based bounds and their improvements, and also consider sphere-packing bounds with their recent improvements targeting codes of moderate block lengths." @default.
- W2077796887 created "2016-06-24" @default.
- W2077796887 creator A5024753336 @default.
- W2077796887 creator A5032026808 @default.
- W2077796887 date "2006-01-01" @default.
- W2077796887 modified "2023-10-01" @default.
- W2077796887 title "Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial" @default.
- W2077796887 cites W101564851 @default.
- W2077796887 cites W126399998 @default.
- W2077796887 cites W129092115 @default.
- W2077796887 cites W147465018 @default.
- W2077796887 cites W1480258705 @default.
- W2077796887 cites W1481039700 @default.
- W2077796887 cites W1496919733 @default.
- W2077796887 cites W1498908240 @default.
- W2077796887 cites W1506964462 @default.
- W2077796887 cites W1507228440 @default.
- W2077796887 cites W1529052492 @default.
- W2077796887 cites W1537675645 @default.
- W2077796887 cites W1549664537 @default.
- W2077796887 cites W1557819056 @default.
- W2077796887 cites W1568267450 @default.
- W2077796887 cites W1572713988 @default.
- W2077796887 cites W1578541505 @default.
- W2077796887 cites W1595625060 @default.
- W2077796887 cites W1608964545 @default.
- W2077796887 cites W1619724041 @default.
- W2077796887 cites W1621877253 @default.
- W2077796887 cites W1646629832 @default.
- W2077796887 cites W1801767348 @default.
- W2077796887 cites W1829931105 @default.
- W2077796887 cites W1870358464 @default.
- W2077796887 cites W1976485331 @default.
- W2077796887 cites W1979144155 @default.
- W2077796887 cites W1979655567 @default.
- W2077796887 cites W1989364649 @default.
- W2077796887 cites W1993944611 @default.
- W2077796887 cites W1997512561 @default.
- W2077796887 cites W2000566002 @default.
- W2077796887 cites W2005530146 @default.
- W2077796887 cites W2006053685 @default.
- W2077796887 cites W2016263918 @default.
- W2077796887 cites W2016506539 @default.
- W2077796887 cites W2017710944 @default.
- W2077796887 cites W2028640165 @default.
- W2077796887 cites W2031711593 @default.
- W2077796887 cites W2034274945 @default.
- W2077796887 cites W2034849381 @default.
- W2077796887 cites W2035092425 @default.
- W2077796887 cites W2035513039 @default.
- W2077796887 cites W2044180609 @default.
- W2077796887 cites W2048382407 @default.
- W2077796887 cites W2057395342 @default.
- W2077796887 cites W2073081764 @default.
- W2077796887 cites W2076598127 @default.
- W2077796887 cites W2076677996 @default.
- W2077796887 cites W2077648298 @default.
- W2077796887 cites W2077814477 @default.
- W2077796887 cites W2087259080 @default.
- W2077796887 cites W2088596571 @default.
- W2077796887 cites W2092271237 @default.
- W2077796887 cites W2096689662 @default.
- W2077796887 cites W2098111206 @default.
- W2077796887 cites W2098257210 @default.
- W2077796887 cites W2098312120 @default.
- W2077796887 cites W2098453397 @default.
- W2077796887 cites W2098470405 @default.
- W2077796887 cites W2098666392 @default.
- W2077796887 cites W2099967175 @default.
- W2077796887 cites W2101281531 @default.
- W2077796887 cites W2101600135 @default.
- W2077796887 cites W2102251435 @default.
- W2077796887 cites W2103604544 @default.
- W2077796887 cites W2104453813 @default.
- W2077796887 cites W2105871565 @default.
- W2077796887 cites W2106565316 @default.
- W2077796887 cites W2106766166 @default.
- W2077796887 cites W2107415402 @default.
- W2077796887 cites W2108009161 @default.
- W2077796887 cites W2108033855 @default.
- W2077796887 cites W2109487231 @default.
- W2077796887 cites W2110363156 @default.
- W2077796887 cites W2110372787 @default.
- W2077796887 cites W2110702026 @default.
- W2077796887 cites W2111987294 @default.
- W2077796887 cites W2112063104 @default.
- W2077796887 cites W2113250082 @default.
- W2077796887 cites W2113257283 @default.
- W2077796887 cites W2114449874 @default.
- W2077796887 cites W2114876089 @default.
- W2077796887 cites W2115228681 @default.
- W2077796887 cites W2117394575 @default.
- W2077796887 cites W2117399109 @default.
- W2077796887 cites W2117498985 @default.
- W2077796887 cites W2120511508 @default.
- W2077796887 cites W2120647302 @default.
- W2077796887 cites W2120972181 @default.
- W2077796887 cites W2120982847 @default.