Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077872018> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2077872018 endingPage "141" @default.
- W2077872018 startingPage "137" @default.
- W2077872018 abstract "Let W be an A *-algebra such that any maximal abelian *-subalgebra is regular and such that any quasinilpotent element x in VI satisfies xN=0, with N< oo. Then any irreducible Hilbert space *-representation is at most N-dimensional. If 9X is a C*-algebra, W possesses transcendental quasinilpotent elements if there exists a v E sf with dim = oo. This note is a continuation of [1]. We want to establish an intimate connection between the degree of noncommutativity of a Banach algebra W and the existence of nilpotent elements in W. The proofs are straightforward extensions of the matrix situation and of methods used in [1]. Throughout all Banach algebras are complex Banach algebras with norm I 1, continuous involution * and an auxiliary norm [3] 1 lo which satisfies Ixx*10=IX12. Such Banach algebras are called A*-algebras [3]. In A*-algebras maximal abelian *-subalgebras are necessarily semisimple. We shall further assume that all Banach algebras have a unit, because the adjunction of a unit does not affect the proofs nor the results. A representation 7r always denotes a *-representation on a Hilbert space H,. We say that x E W is n-nilpotent, with n= oo, 1, 2, , if x is quasinilpotent and xr=O but xn-1$O. We begin with a simple lemma, which is probably known. LEMMA. Let 9[ be an A*-algebra such that any x=x* E W has a finite spectrum with at nmost n points; then dim %:t?n2. PROOF. Let 28 be a maximal abelian (semisimple)*-subalgebra of WI. Then the character space Q3 of 23 has at most n elements. Hence any x c 03 has the form x= ji,? A,ei, where the ei are the minimal idempotents of 23. The ei are selfadjoint and it is easy to see that dim ei. ej< 1. THEOREM 1. (i) Let W be an A *-algebra such that any maximal abelian *-subalgebra is regular and such that any quasinilpotent element x in W satisfies xN=0, then an)' irreducible representation r of 9f is at most N dimensional. Received by the editors February 10, 1972. AMS (MOS) subject class fications (1969). Primary 4660, 4665." @default.
- W2077872018 created "2016-06-24" @default.
- W2077872018 creator A5049793640 @default.
- W2077872018 date "1973-01-01" @default.
- W2077872018 modified "2023-09-26" @default.
- W2077872018 title "Nilpotent elements in Banach algebras" @default.
- W2077872018 cites W2028648288 @default.
- W2077872018 cites W2032220545 @default.
- W2077872018 cites W2043047844 @default.
- W2077872018 cites W3038830718 @default.
- W2077872018 doi "https://doi.org/10.1090/s0002-9939-1973-0315457-8" @default.
- W2077872018 hasPublicationYear "1973" @default.
- W2077872018 type Work @default.
- W2077872018 sameAs 2077872018 @default.
- W2077872018 citedByCount "3" @default.
- W2077872018 countsByYear W20778720182020 @default.
- W2077872018 crossrefType "journal-article" @default.
- W2077872018 hasAuthorship W2077872018A5049793640 @default.
- W2077872018 hasBestOaLocation W20778720181 @default.
- W2077872018 hasConcept C114614502 @default.
- W2077872018 hasConcept C118615104 @default.
- W2077872018 hasConcept C132954091 @default.
- W2077872018 hasConcept C136119220 @default.
- W2077872018 hasConcept C136170076 @default.
- W2077872018 hasConcept C202444582 @default.
- W2077872018 hasConcept C2781106287 @default.
- W2077872018 hasConcept C33923547 @default.
- W2077872018 hasConcept C50555996 @default.
- W2077872018 hasConcept C67996461 @default.
- W2077872018 hasConceptScore W2077872018C114614502 @default.
- W2077872018 hasConceptScore W2077872018C118615104 @default.
- W2077872018 hasConceptScore W2077872018C132954091 @default.
- W2077872018 hasConceptScore W2077872018C136119220 @default.
- W2077872018 hasConceptScore W2077872018C136170076 @default.
- W2077872018 hasConceptScore W2077872018C202444582 @default.
- W2077872018 hasConceptScore W2077872018C2781106287 @default.
- W2077872018 hasConceptScore W2077872018C33923547 @default.
- W2077872018 hasConceptScore W2077872018C50555996 @default.
- W2077872018 hasConceptScore W2077872018C67996461 @default.
- W2077872018 hasIssue "1" @default.
- W2077872018 hasLocation W20778720181 @default.
- W2077872018 hasOpenAccess W2077872018 @default.
- W2077872018 hasPrimaryLocation W20778720181 @default.
- W2077872018 hasRelatedWork W106947665 @default.
- W2077872018 hasRelatedWork W1594696343 @default.
- W2077872018 hasRelatedWork W189893817 @default.
- W2077872018 hasRelatedWork W1993404018 @default.
- W2077872018 hasRelatedWork W2007365690 @default.
- W2077872018 hasRelatedWork W2016780299 @default.
- W2077872018 hasRelatedWork W2027611576 @default.
- W2077872018 hasRelatedWork W2036095000 @default.
- W2077872018 hasRelatedWork W2038027336 @default.
- W2077872018 hasRelatedWork W2055707487 @default.
- W2077872018 hasRelatedWork W2063314199 @default.
- W2077872018 hasRelatedWork W2098187410 @default.
- W2077872018 hasRelatedWork W2098573386 @default.
- W2077872018 hasRelatedWork W2141939819 @default.
- W2077872018 hasRelatedWork W2149700155 @default.
- W2077872018 hasRelatedWork W2962703799 @default.
- W2077872018 hasRelatedWork W3038966402 @default.
- W2077872018 hasRelatedWork W3140927352 @default.
- W2077872018 hasRelatedWork W3207453441 @default.
- W2077872018 hasRelatedWork W2067737135 @default.
- W2077872018 hasVolume "37" @default.
- W2077872018 isParatext "false" @default.
- W2077872018 isRetracted "false" @default.
- W2077872018 magId "2077872018" @default.
- W2077872018 workType "article" @default.