Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077881080> ?p ?o ?g. }
- W2077881080 endingPage "147" @default.
- W2077881080 startingPage "1" @default.
- W2077881080 abstract "This paper is devoted to the study of propagation of chaos and mean-field limits for systems of indistinguishable particles, undergoing collision processes. The prime examples we will consider are the many-particle jump processes of Kac and McKean (Kac in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, Vol. III, pp. 171–197, 1956; McKean in J. Comb. Theory 2:358–382, 1967) giving rise to the Boltzmann equation. We solve the conjecture raised by Kac (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, Vol. III, pp. 171–197, 1956), motivating his program, on the rigorous connection between the long-time behavior of a collisional many-particle system and the one of its mean-field limit, for bounded as well as unbounded collision rates. Motivated by the inspirative paper by Grünbaum (Arch. Ration. Mech. Anal. 42:323–345, 1971), we develop an abstract method that reduces the question of propagation of chaos to that of proving a purely functional estimate on generator operators (consistency estimates), along with differentiability estimates on the flow of the nonlinear limit equation (stability estimates). This allows us to exploit dissipativity at the level of the mean-field limit equation rather than the level of the particle system (as proposed by Kac). Using this method we show: (1) Quantitative estimates, that are uniform in time, on the chaoticity of a family of states. (2) Propagation of entropic chaoticity, as defined by Carlen et al. (Kinet. Relat. Models 3:85–122, 2010). (3) Estimates on the time of relaxation to equilibrium, that are independent of the number of particles in the system. Our results cover the two main Boltzmann physical collision processes with unbounded collision rates: hard spheres and true Maxwell molecules interactions. The proof of the stability estimates for these models requires significant analytic efforts and new estimates." @default.
- W2077881080 created "2016-06-24" @default.
- W2077881080 creator A5021546831 @default.
- W2077881080 creator A5060848970 @default.
- W2077881080 date "2012-09-08" @default.
- W2077881080 modified "2023-10-11" @default.
- W2077881080 title "Kac’s program in kinetic theory" @default.
- W2077881080 cites W144806251 @default.
- W2077881080 cites W1527296550 @default.
- W2077881080 cites W1538135945 @default.
- W2077881080 cites W1568056205 @default.
- W2077881080 cites W1585160083 @default.
- W2077881080 cites W1600015713 @default.
- W2077881080 cites W1637560799 @default.
- W2077881080 cites W182704713 @default.
- W2077881080 cites W1969372542 @default.
- W2077881080 cites W1972230058 @default.
- W2077881080 cites W1975135296 @default.
- W2077881080 cites W1989800311 @default.
- W2077881080 cites W1994933289 @default.
- W2077881080 cites W1995125414 @default.
- W2077881080 cites W1996690797 @default.
- W2077881080 cites W1998195517 @default.
- W2077881080 cites W2004002285 @default.
- W2077881080 cites W2013472589 @default.
- W2077881080 cites W2023195358 @default.
- W2077881080 cites W2025984590 @default.
- W2077881080 cites W2027383644 @default.
- W2077881080 cites W2030922374 @default.
- W2077881080 cites W2041520137 @default.
- W2077881080 cites W2046589918 @default.
- W2077881080 cites W2048742156 @default.
- W2077881080 cites W2052196064 @default.
- W2077881080 cites W2054673836 @default.
- W2077881080 cites W2054723044 @default.
- W2077881080 cites W2061521749 @default.
- W2077881080 cites W2066793563 @default.
- W2077881080 cites W2067041580 @default.
- W2077881080 cites W2071048859 @default.
- W2077881080 cites W2075168679 @default.
- W2077881080 cites W2077889159 @default.
- W2077881080 cites W2080877741 @default.
- W2077881080 cites W2082465672 @default.
- W2077881080 cites W2090381981 @default.
- W2077881080 cites W2092410600 @default.
- W2077881080 cites W2112814945 @default.
- W2077881080 cites W2121601696 @default.
- W2077881080 cites W2130401121 @default.
- W2077881080 cites W2131947874 @default.
- W2077881080 cites W2140416999 @default.
- W2077881080 cites W2160048513 @default.
- W2077881080 cites W2160199745 @default.
- W2077881080 cites W2164651966 @default.
- W2077881080 cites W2169704717 @default.
- W2077881080 cites W2189101238 @default.
- W2077881080 cites W2962940529 @default.
- W2077881080 cites W2962989966 @default.
- W2077881080 cites W3102512091 @default.
- W2077881080 cites W3103804728 @default.
- W2077881080 cites W4214662400 @default.
- W2077881080 cites W4231381519 @default.
- W2077881080 cites W4233762729 @default.
- W2077881080 cites W4234651936 @default.
- W2077881080 cites W4242229793 @default.
- W2077881080 cites W576681630 @default.
- W2077881080 cites W69072573 @default.
- W2077881080 cites W2057386942 @default.
- W2077881080 doi "https://doi.org/10.1007/s00222-012-0422-3" @default.
- W2077881080 hasPublicationYear "2012" @default.
- W2077881080 type Work @default.
- W2077881080 sameAs 2077881080 @default.
- W2077881080 citedByCount "135" @default.
- W2077881080 countsByYear W20778810802012 @default.
- W2077881080 countsByYear W20778810802013 @default.
- W2077881080 countsByYear W20778810802014 @default.
- W2077881080 countsByYear W20778810802015 @default.
- W2077881080 countsByYear W20778810802016 @default.
- W2077881080 countsByYear W20778810802017 @default.
- W2077881080 countsByYear W20778810802018 @default.
- W2077881080 countsByYear W20778810802019 @default.
- W2077881080 countsByYear W20778810802020 @default.
- W2077881080 countsByYear W20778810802021 @default.
- W2077881080 countsByYear W20778810802022 @default.
- W2077881080 countsByYear W20778810802023 @default.
- W2077881080 crossrefType "journal-article" @default.
- W2077881080 hasAuthorship W2077881080A5021546831 @default.
- W2077881080 hasAuthorship W2077881080A5060848970 @default.
- W2077881080 hasBestOaLocation W20778810802 @default.
- W2077881080 hasConcept C111919701 @default.
- W2077881080 hasConcept C118615104 @default.
- W2077881080 hasConcept C121332964 @default.
- W2077881080 hasConcept C121864883 @default.
- W2077881080 hasConcept C134306372 @default.
- W2077881080 hasConcept C151201525 @default.
- W2077881080 hasConcept C158622935 @default.
- W2077881080 hasConcept C163258240 @default.
- W2077881080 hasConcept C179003449 @default.
- W2077881080 hasConcept C199343813 @default.