Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077882152> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2077882152 abstract "The standard (Bayesian) methods for image denoising involve explicit (analytic) models of signal and noise. The performance of these parametric approaches critically depend on using realistic models, but accurate models may ruin analytical tractability. Recently, an alternative nonparametric method was successfully proposed in [1]. The method was based on developing stationary support vector regression (SVR) models in the wavelet domain according to prior knowledge about signal and noise features. Nevertheless, off-line analysis of the particular signal and noise statistics is required to apply it to different problems. In this work, we take a similar non-parametric approach, but we explore the ability of kernel ridge regression (KRR) to locally follow image and noise characteristics, thus trivially obtaining adaptive (non-stationary) description of the image. Making KRR adaptive alleviates the strong assumption of Gaussianity of the noise. The method is embedded in the iterative restoration framework that allows consistent parameter tuning. Promising results are obtained with a model straightforwardly formulated in the spatial domain for different noise sources." @default.
- W2077882152 created "2016-06-24" @default.
- W2077882152 creator A5000727574 @default.
- W2077882152 creator A5039052506 @default.
- W2077882152 creator A5065281659 @default.
- W2077882152 creator A5065733630 @default.
- W2077882152 date "2010-08-01" @default.
- W2077882152 modified "2023-09-23" @default.
- W2077882152 title "Adaptive kernel ridge regression for image denoising" @default.
- W2077882152 cites W1775729916 @default.
- W2077882152 cites W1972348417 @default.
- W2077882152 cites W1998930608 @default.
- W2077882152 cites W2022239878 @default.
- W2077882152 cites W2056370875 @default.
- W2077882152 cites W2079724595 @default.
- W2077882152 cites W2108931519 @default.
- W2077882152 cites W2113945798 @default.
- W2077882152 cites W2133665775 @default.
- W2077882152 cites W2137577808 @default.
- W2077882152 cites W2143600500 @default.
- W2077882152 cites W2144838809 @default.
- W2077882152 cites W2150060382 @default.
- W2077882152 cites W2163883637 @default.
- W2077882152 cites W3219603 @default.
- W2077882152 cites W625895441 @default.
- W2077882152 doi "https://doi.org/10.1109/mlsp.2010.5588824" @default.
- W2077882152 hasPublicationYear "2010" @default.
- W2077882152 type Work @default.
- W2077882152 sameAs 2077882152 @default.
- W2077882152 citedByCount "2" @default.
- W2077882152 countsByYear W20778821522020 @default.
- W2077882152 crossrefType "proceedings-article" @default.
- W2077882152 hasAuthorship W2077882152A5000727574 @default.
- W2077882152 hasAuthorship W2077882152A5039052506 @default.
- W2077882152 hasAuthorship W2077882152A5065281659 @default.
- W2077882152 hasAuthorship W2077882152A5065733630 @default.
- W2077882152 hasConcept C102366305 @default.
- W2077882152 hasConcept C105795698 @default.
- W2077882152 hasConcept C11413529 @default.
- W2077882152 hasConcept C114614502 @default.
- W2077882152 hasConcept C115961682 @default.
- W2077882152 hasConcept C117251300 @default.
- W2077882152 hasConcept C119857082 @default.
- W2077882152 hasConcept C152877465 @default.
- W2077882152 hasConcept C153180895 @default.
- W2077882152 hasConcept C154945302 @default.
- W2077882152 hasConcept C163294075 @default.
- W2077882152 hasConcept C33923547 @default.
- W2077882152 hasConcept C41008148 @default.
- W2077882152 hasConcept C74127309 @default.
- W2077882152 hasConcept C74193536 @default.
- W2077882152 hasConcept C99498987 @default.
- W2077882152 hasConceptScore W2077882152C102366305 @default.
- W2077882152 hasConceptScore W2077882152C105795698 @default.
- W2077882152 hasConceptScore W2077882152C11413529 @default.
- W2077882152 hasConceptScore W2077882152C114614502 @default.
- W2077882152 hasConceptScore W2077882152C115961682 @default.
- W2077882152 hasConceptScore W2077882152C117251300 @default.
- W2077882152 hasConceptScore W2077882152C119857082 @default.
- W2077882152 hasConceptScore W2077882152C152877465 @default.
- W2077882152 hasConceptScore W2077882152C153180895 @default.
- W2077882152 hasConceptScore W2077882152C154945302 @default.
- W2077882152 hasConceptScore W2077882152C163294075 @default.
- W2077882152 hasConceptScore W2077882152C33923547 @default.
- W2077882152 hasConceptScore W2077882152C41008148 @default.
- W2077882152 hasConceptScore W2077882152C74127309 @default.
- W2077882152 hasConceptScore W2077882152C74193536 @default.
- W2077882152 hasConceptScore W2077882152C99498987 @default.
- W2077882152 hasLocation W20778821521 @default.
- W2077882152 hasOpenAccess W2077882152 @default.
- W2077882152 hasPrimaryLocation W20778821521 @default.
- W2077882152 hasRelatedWork W1482463307 @default.
- W2077882152 hasRelatedWork W1967272741 @default.
- W2077882152 hasRelatedWork W2000388799 @default.
- W2077882152 hasRelatedWork W2146390275 @default.
- W2077882152 hasRelatedWork W2159436900 @default.
- W2077882152 hasRelatedWork W2391330354 @default.
- W2077882152 hasRelatedWork W2949120947 @default.
- W2077882152 hasRelatedWork W3044644765 @default.
- W2077882152 hasRelatedWork W4205896582 @default.
- W2077882152 hasRelatedWork W4220781409 @default.
- W2077882152 isParatext "false" @default.
- W2077882152 isRetracted "false" @default.
- W2077882152 magId "2077882152" @default.
- W2077882152 workType "article" @default.