Matches in SemOpenAlex for { <https://semopenalex.org/work/W2077953752> ?p ?o ?g. }
- W2077953752 endingPage "219" @default.
- W2077953752 startingPage "210" @default.
- W2077953752 abstract "Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3−12 Å in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = ∞) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our more recent work on polycrystalline zeolite thin films as promising biocompatible coatings and environmentally benign wear-resistant and antifouling coatings. When zeolites are incorporated into polymer thin films in the form of nanocrystals, we also show that the resultant composite membranes can significantly improve the performance of reverse osmosis membranes for sea water desalination and proton exchange membrane fuel cells. These diverse applications of zeolites have the potential to initiate new industries while revolutionizing existing ones with a potential economic impact that could extend into the hundreds of billions of dollars. We have licensed several of these inventions to companies with millions of dollars invested in their commercial development. We expect that other related technologies will be licensed in the near future." @default.
- W2077953752 created "2016-06-24" @default.
- W2077953752 creator A5024973131 @default.
- W2077953752 creator A5029624856 @default.
- W2077953752 creator A5083625542 @default.
- W2077953752 date "2009-10-23" @default.
- W2077953752 modified "2023-10-03" @default.
- W2077953752 title "Zeolite Thin Films: From Computer Chips to Space Stations" @default.
- W2077953752 cites W1885652621 @default.
- W2077953752 cites W1898734385 @default.
- W2077953752 cites W1965284698 @default.
- W2077953752 cites W1968685074 @default.
- W2077953752 cites W1969555886 @default.
- W2077953752 cites W1970982819 @default.
- W2077953752 cites W1972334364 @default.
- W2077953752 cites W1977131637 @default.
- W2077953752 cites W1978162548 @default.
- W2077953752 cites W1984311387 @default.
- W2077953752 cites W1984755698 @default.
- W2077953752 cites W1988072671 @default.
- W2077953752 cites W1989441690 @default.
- W2077953752 cites W1989977522 @default.
- W2077953752 cites W1992116574 @default.
- W2077953752 cites W1994779029 @default.
- W2077953752 cites W1995909235 @default.
- W2077953752 cites W1997971566 @default.
- W2077953752 cites W1998334336 @default.
- W2077953752 cites W1999658603 @default.
- W2077953752 cites W2002108704 @default.
- W2077953752 cites W2002896524 @default.
- W2077953752 cites W2005618033 @default.
- W2077953752 cites W2009221461 @default.
- W2077953752 cites W2014432551 @default.
- W2077953752 cites W2016606647 @default.
- W2077953752 cites W2017603079 @default.
- W2077953752 cites W2034607622 @default.
- W2077953752 cites W2035512058 @default.
- W2077953752 cites W2039726217 @default.
- W2077953752 cites W2042528132 @default.
- W2077953752 cites W2045492376 @default.
- W2077953752 cites W2046961463 @default.
- W2077953752 cites W2047726986 @default.
- W2077953752 cites W2048013237 @default.
- W2077953752 cites W2053559938 @default.
- W2077953752 cites W2055113348 @default.
- W2077953752 cites W2059834016 @default.
- W2077953752 cites W2060160673 @default.
- W2077953752 cites W2063587353 @default.
- W2077953752 cites W2069075078 @default.
- W2077953752 cites W2084825258 @default.
- W2077953752 cites W2091950798 @default.
- W2077953752 cites W2095683692 @default.
- W2077953752 cites W2098057902 @default.
- W2077953752 cites W2113998801 @default.
- W2077953752 cites W2122838892 @default.
- W2077953752 cites W2134454882 @default.
- W2077953752 cites W2138901797 @default.
- W2077953752 cites W2139290791 @default.
- W2077953752 cites W2168496278 @default.
- W2077953752 cites W2168980954 @default.
- W2077953752 cites W2315871611 @default.
- W2077953752 cites W2507092044 @default.
- W2077953752 cites W4236288395 @default.
- W2077953752 cites W4250781000 @default.
- W2077953752 cites W4253133555 @default.
- W2077953752 doi "https://doi.org/10.1021/ar900146w" @default.
- W2077953752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20158246" @default.
- W2077953752 hasPublicationYear "2009" @default.
- W2077953752 type Work @default.
- W2077953752 sameAs 2077953752 @default.
- W2077953752 citedByCount "185" @default.
- W2077953752 countsByYear W20779537522012 @default.
- W2077953752 countsByYear W20779537522013 @default.
- W2077953752 countsByYear W20779537522014 @default.
- W2077953752 countsByYear W20779537522015 @default.
- W2077953752 countsByYear W20779537522016 @default.
- W2077953752 countsByYear W20779537522017 @default.
- W2077953752 countsByYear W20779537522018 @default.
- W2077953752 countsByYear W20779537522019 @default.
- W2077953752 countsByYear W20779537522020 @default.
- W2077953752 countsByYear W20779537522021 @default.
- W2077953752 countsByYear W20779537522022 @default.
- W2077953752 countsByYear W20779537522023 @default.
- W2077953752 crossrefType "journal-article" @default.
- W2077953752 hasAuthorship W2077953752A5024973131 @default.
- W2077953752 hasAuthorship W2077953752A5029624856 @default.
- W2077953752 hasAuthorship W2077953752A5083625542 @default.
- W2077953752 hasConcept C117760992 @default.
- W2077953752 hasConcept C127413603 @default.
- W2077953752 hasConcept C133386390 @default.
- W2077953752 hasConcept C145148216 @default.
- W2077953752 hasConcept C150394285 @default.
- W2077953752 hasConcept C161790260 @default.
- W2077953752 hasConcept C171250308 @default.
- W2077953752 hasConcept C178790620 @default.
- W2077953752 hasConcept C185592680 @default.
- W2077953752 hasConcept C19067145 @default.
- W2077953752 hasConcept C191897082 @default.