Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078013325> ?p ?o ?g. }
- W2078013325 endingPage "1343" @default.
- W2078013325 startingPage "1339" @default.
- W2078013325 abstract "To identify genes that are associated with premature ovarian failure, a linkage disequilibrium-based genome-wide association study with dense single nucleotide polymorphisms as genetic markers was performed. The acyl-coenzyme A synthetase long-chain family member 6 (ACSL6) gene on chromosome 5q31 was associated with premature ovarian failure and identified disease-susceptibility haplotypes. To identify genes that are associated with premature ovarian failure, a linkage disequilibrium-based genome-wide association study with dense single nucleotide polymorphisms as genetic markers was performed. The acyl-coenzyme A synthetase long-chain family member 6 (ACSL6) gene on chromosome 5q31 was associated with premature ovarian failure and identified disease-susceptibility haplotypes. Premature ovarian failure (POF) is defined as the cessation of menstruation before 40 years of age and is divided into two clinical categories of amenorrhea: primary (absent menarche) and secondary (depletion of follicles or arrested folliculogenesis) (1Coulam C.B. Premature gonadal failure.Fertil Steril. 1982; 38: 645-655Abstract Full Text PDF PubMed Google Scholar). The biochemical features of POF are hypergonadotropism (serum FSH levels >40 IU/L) and hypoestrogenism. Potential etiologies of POF (2Santoro N. Mechanisms of premature ovarian failure.Ann Endocrinol (Paris). 2003; 64: 87-92PubMed Google Scholar) are autoimmunity (3Hoek A. Schoemaker J. Drexhage H.A. Premature ovarian failure and ovarian autoimmunity.Endocr Rev. 1997; 18: 107-134Crossref PubMed Scopus (387) Google Scholar), iatrogenicity (4Meirow D. Nugent D. The effects of radiotherapy and chemotherapy on female reproduction.Hum Reprod Update. 2001; 7: 535-543Crossref PubMed Scopus (654) Google Scholar), galactosemia (5Guerrero N.V. Singh R.H. Manatunga A. Berry G.T. Steiner R.D. Elsas LJ II. Risk factors for premature ovarian failure in females with galactosemia.J Pediatr. 2000; 137: 833-841Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar), and chromosomal aberrations (6Tibiletti M.G. Testa G. Vegetti W. Alagna F. Taborelli M. Dalprà L. et al.The idiopathic forms of premature menopause and early menopause show the same genetic pattern.Hum Reprod. 1999; 14: 2731-2734Crossref PubMed Scopus (66) Google Scholar), although its exact pathogenesis has not been documented. In addition, POF is known to be associated with susceptibility to other diseases, such as cardiovascular disease (7Wise P.M. Krajnak K.M. Kashon M.L. Menopause: the aging of multiple pacemakers.Science. 1996; 273: 67-70Crossref PubMed Scopus (175) Google Scholar) and osteoporosis (8Osei-Hyiaman D. Satoshi T. Ueji M. Hideto T. Kano K. Timing of menopause, reproductive years, and bone mineral density: a cross-sectional study of postmenopausal Japanese women.Am J Epidemiol. 1998; 148: 1055-1061Crossref PubMed Scopus (39) Google Scholar). Thus, POF represents a complex trait and occurs in approximately 1% of women of reproductive age (9Luborsky J.L. Meyer P. Sowers M.F. Gold E.B. Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition.Hum Reprod. 2003; 8: 199-206Crossref Scopus (281) Google Scholar). The prevalence for POF is similar in Korean women (10Chang S.H. Kim C.S. Lee K.S. Kim H. Yim S.V. Lim Y.J. et al.Premenopausal factors influencing premature ovarian failure and early menopause.Maturitas. 2007; 58: 19-30Abstract Full Text Full Text PDF PubMed Scopus (76) Google Scholar). Numerous studies have shown that POF is influenced by heterogeneous genetic factors (11Vegetti W. Grazia Tibiletti M. Testa G. de Lauretis Yankowski Alagna F. Castoldi E. et al.Inheritance in idiopathic premature ovarian failure: analysis of 71 cases.Hum Reprod. 1998; 13: 1796-1800Crossref PubMed Scopus (118) Google Scholar, 12Conway G.S. Premature ovarian failure.Curr Opin Obstet Gynecol. 1997; 9: 202-206Crossref PubMed Scopus (64) Google Scholar). Approximately 20% of women with POF have affected relatives (13Woad K.J. Watkins W.J. Prendergast D. Shelling A.N. The genetic basis of premature ovarian failure.Aust N Z J Obstet Gynaecol. 2006; 46: 242-244Crossref PubMed Scopus (83) Google Scholar). Familial studies have suggested X-linked inheritance for POF (11Vegetti W. Grazia Tibiletti M. Testa G. de Lauretis Yankowski Alagna F. Castoldi E. et al.Inheritance in idiopathic premature ovarian failure: analysis of 71 cases.Hum Reprod. 1998; 13: 1796-1800Crossref PubMed Scopus (118) Google Scholar, 14Mattison D.R. Evans M.I. Schwimmer W.B. White B.J. Jensen B. Schulman J.D. Familial premature ovarian failure.Am J Hum Genet. 1984; 36: 1341-1348PubMed Google Scholar). Many studies have focused on the X chromosome and shown genetic effects of POF on ovarian function, such as Turner syndrome (11Vegetti W. Grazia Tibiletti M. Testa G. de Lauretis Yankowski Alagna F. Castoldi E. et al.Inheritance in idiopathic premature ovarian failure: analysis of 71 cases.Hum Reprod. 1998; 13: 1796-1800Crossref PubMed Scopus (118) Google Scholar), trisomy X syndrome (15Holland C.M. 47,XXX in an adolescent with premature ovarian failure and autoimmune disease.J Pediatr Adolesc Gynecol. 2001; 14: 77-80Abstract Full Text Full Text PDF PubMed Scopus (46) Google Scholar), fragile X syndrome (16Conway G.S. Hettiarachchi S. Murray A. Jacobs P.A. Fragile X permutations in familial premature ovarian failure.Lancet. 1995; 346: 309-310Crossref PubMed Scopus (102) Google Scholar), balanced X chromosome translocations (17Zinn A.R. The X chromosome and the ovary.J Soc Gynecol Investig. 2001; 8: S34-S36Crossref PubMed Google Scholar), and the POF loci, POF1 to POF4 (OMIM #311360 [Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim]). In addition, population-based association studies for candidate genes have found some genes that are associated with POF, most of which participate in ovarian functions of the reproductive system (18Aittomaki K. Lucena J.L. Pakarinen P. Sistonen P. Tapanainen J. Gromoll J. et al.Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure.Cell. 1995; 82: 959-968Abstract Full Text PDF PubMed Scopus (816) Google Scholar, 19Harris S.E. Chand A.L. Winship I.M. Gersak K. Nishi Y. Yanase T. et al.INHA promoter polymorphisms are associated with premature ovarian failure.Mol Hum Reprod. 2005; 11: 779-784Crossref PubMed Scopus (51) Google Scholar). These association studies have been somewhat controversial (20Conway G.S. Conway E. Walker C. Hoppner W. Gromoll J. Simoni M. Mutation screening and isoform prevalence of the follicle stimulating hormone receptor gene in women with premature ovarian failure, resistant ovary syndrome and polycystic ovary syndrome.Clin Endocrinol (Oxf). 1999; 51: 97-99Crossref PubMed Scopus (146) Google Scholar, 21Jeong H.J. Cho S.W. Kim H.A. Lee S.H. Cho J.H. Choi D.H. et al.G769A variation of inhibin alpha-gene in Korean women with premature ovarian failure.Yonsei Med J. 2004; 45: 479-482Crossref PubMed Scopus (31) Google Scholar). One source of controversy is the ethnic specificity of the patterns of mutational frequencies (10Chang S.H. Kim C.S. Lee K.S. Kim H. Yim S.V. Lim Y.J. et al.Premenopausal factors influencing premature ovarian failure and early menopause.Maturitas. 2007; 58: 19-30Abstract Full Text Full Text PDF PubMed Scopus (76) Google Scholar, 22Burchard E.G. Ziv E. Coyle N. Gomez S.L. Tang H. Karter A.J. et al.The importance of race and ethnic background in biomedical research and clinical practice.N Engl J Med. 2003; 348: 1170-1175Crossref PubMed Scopus (841) Google Scholar, 23Phimister E.G. Medicine and the racial divide.N Engl J Med. 2003; 348: 1081-1082Crossref PubMed Scopus (65) Google Scholar). Another source of controversy is the complexity and heterogeneity of the polygenic trait/disease, caused by multiple genes. Thus, association studies with individual candidate genes for the disease may be insufficient to explain the status of a complex and polygenic disease such as POF (24Jones R. Pembrey M. Golding J. Herrick D. The search for genotype/phenotype associations and the phenome scan.Paediatr Perinat Epidemiol. 2005; 19: 264-275Crossref PubMed Scopus (29) Google Scholar). A genome-wide association study based on linkage disequilibrium (LD) mapping, an indirect approach, is an appropriate method for overcoming the above problems and finding disease-associated genes (25Hirschhorn J.N. Daly M.J. Genome-wide association studies for common diseases and complex traits.Nat Rev Genet. 2005; 6: 95-108Crossref PubMed Scopus (2103) Google Scholar, 26Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes.Nat Genet. 1999; 22: 139-144Crossref PubMed Scopus (1131) Google Scholar). Moreover, it has been reported that this approach using dense polymorphisms as genetic markers is efficient for finding disease genes even with a small sample size (27Cheung V.G. Spielman R.S. Ewens K.G. Weber T.M. Morley M. Burdick J.T. Mapping determinants of human gene expression by regional and genome-wide association.Nature. 2005; 437: 1365-1369Crossref PubMed Scopus (480) Google Scholar). Therefore, the ultimate goal of this study was to identify POF-associated genes or genetic regions through a genome-wide association study using dense single nucleotide polymorphisms (SNPs) that were appropriate for LD analysis. The 48 subjects were divided into two groups: 24 women with POF and 24 matched female controls. High levels of serum FSH (>40 IU/L) and amenorrhea before age 40 years were used as the clinical criteria for diagnosing POF. The matched controls had regular menstrual cycles before spontaneous menopause, had offspring from pregnancies, and were of perimenopausal or postmenopausal age. All subjects had a normal female karyotype (46,XX). This study was approved by the institutional review board at Pochon CHA University (Gyeonggi-do, Republic of Korea). Genomic DNA was prepared from the subjects' blood and used as a template for whole-genome genotyping by the Infinium Assay I (Illumina, San Diego, CA), which is a microarray technology platform for genotyping using allele-specific primer extension. The probes on the platform consisted of 75 nucleotides; 25 nucleotides at the 5′-end were used as the address sequence to distinguish each SNP, and the remaining nucleotides were used as allele-specific primers to determine the allelic type of each SNP (28Gunderson K.L. Kruglyak S. Graige M.S. Garcia F. Kermani B.G. Zhao C. et al.Decoding randomly ordered DNA arrays.Genome Res. 2004; 14: 870-877Crossref PubMed Scopus (252) Google Scholar, 29Gunderson K.L. Steemers F.J. Lee G. Mendoza L.G. Chee M.S. A genome-wide scalable SNP genotyping assay using microarray technology.Nat Genet. 2005; 37: 549-554Crossref PubMed Scopus (496) Google Scholar). This platform was designed as an easy-to-perform indirect approach for finding disease genes, because high-throughput SNPs are distributed in an exon-centric and evenly spaced manner throughout the genome and are suitable for LD analysis. The Infinium Assay I was performed according to the manufacturer's recommended protocol, and genotypes were determined by clustering from the calculated signal intensities using BeadStudio III software (Illumina) (29Gunderson K.L. Steemers F.J. Lee G. Mendoza L.G. Chee M.S. A genome-wide scalable SNP genotyping assay using microarray technology.Nat Genet. 2005; 37: 549-554Crossref PubMed Scopus (496) Google Scholar). Allelic and genotypic frequencies were calculated and genotype distributions at each SNP were tested for Hardy-Weinberg equilibrium. Linkage disequilibrium analysis and haplotype inference and association studies for disease were performed with Haploview 4.0 software (http://www.broad.mit.edu/mpg/haploview/index.php). Disease-association studies for genotypes and haplotypes with corrections by Monte Carlo estimation were performed using the SAS 9.1.3 software package (SAS Institute, Cary, NC). Through LD-based genome-wide association mapping, we found a part of chromosome 5q31 that was strongly associated with POF and that encoded the acyl-coenzyme A (CoA) synthetase long-chain family member 6 (ACSL6) gene. Six SNPs in this gene were genotyped and found to be in Hardy-Weinberg equilibrium. A disease-association study for the genotypes of all of the SNPs showed significant differences, and this result was statistically corrected by Monte Carlo estimations as multiple comparisons (Table 1). In the results of pair-wise LD analyses, strong haplotype blocks containing all of the 6 SNPs were formed by Gabriel's rule (30Gabriel S.B. Schaffner S.F. Nguyen H. Moore J.M. Roy J. Blumenstiel B. et al.The structure of haplotype blocks in the human genome.Science. 2002; 296: 2225-2229Crossref PubMed Scopus (4665) Google Scholar), which constituted nearly a complete LD (|D'| = 1, γ2 ≠ 1) (31Devlin B. Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping.Genomics. 1995; 29: 311-322Crossref PubMed Scopus (851) Google Scholar), and five haplotypes (ht) were reconstructed by the partition ligation-expectation maximization algorithm (32Qin Z.S. Niu T. Liu J.S. Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms.Am J Hum Genet. 2002; 71: 1242-1247Abstract Full Text Full Text PDF PubMed Scopus (422) Google Scholar) (data not shown). In the disease-association study for haplotype models, ht1 showed a significantly higher frequency in POF patients, after correction for significance by Monte Carlo estimation as multiple comparisons (Table 1). Genotyped SNPs were distributed throughout the ACSL6 gene from intron 1 to the 3′-flanking region.Table 1Disease-association study for genotype distribution and a haplotype model with six SNPs in the ACSL6 gene in both groups.SNP/ haplotype (ht)Location/ ht frequencyaRepresents total frequency from both subjects.Genotype/ht distributionControl (n = 24)POF (n = 24)P value (Fisher's exact test)P value (MC)bMean corrected probability value for statistical significance by one of the multiple comparisons with 100,000 repeats.rs676944 G>A3′-flankingG G8 (33.33)4 (16.67).0006.009A G15 (62.50)10 (41.67)A A1 (4.17)10 (41.67)rs476428 G>AIntron 17G G8 (33.33)4 (16.67).0006.009A G15 (62.50)10 (41.67)A A1 (4.17)10 (41.67)rs173812 A>GIntron 09A A8 (33.33)4 (16.67).0006.009A G15 (62.50)10 (41.67)G G1 (4.17)10 (41.67)rs77938 C>TIntron 08C C4 (16.67)12 (50.00).0038.058T C13 (54.17)8 (33.33)T T7 (29.17)4 (16.67)rs440970 T>GIntron 01T T3 (12.50)12 (50.00).0015.021T G14 (58.33)8 (33.33)G G7 (29.17)4 (16.67)rs247002 C>TIntron 01C C4 (16.67)12 (50.00).0038.057T C13 (54.17)8 (33.33)T T7 (29.17)4 (16.67)ht1 AAGCTC0.49ht1 / ht11 (4.17)10 (41.67).00055.0089ht1 / —15 (62.50)10 (41.67)— / —8 (33.33)4 (16.67)Note: rs numbers indicate accession numbers for each SNP, which is identified at the National Center for Biotechnology Information dbSNP database. Values in parentheses are percentages.a Represents total frequency from both subjects.b Mean corrected probability value for statistical significance by one of the multiple comparisons with 100,000 repeats. Open table in a new tab Note: rs numbers indicate accession numbers for each SNP, which is identified at the National Center for Biotechnology Information dbSNP database. Values in parentheses are percentages. In the present study, we have found that the ACSL6 gene on chromosome 5q31 is associated with POF and that ht1, “AAGCTC,” which spans this gene, represents a genetic susceptibility risk. In view of this indirect approach based on LD analysis with dense SNPs as markers (25Hirschhorn J.N. Daly M.J. Genome-wide association studies for common diseases and complex traits.Nat Rev Genet. 2005; 6: 95-108Crossref PubMed Scopus (2103) Google Scholar, 26Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes.Nat Genet. 1999; 22: 139-144Crossref PubMed Scopus (1131) Google Scholar), the significant differences in ht1 between the two groups convincingly suggests an association of the ACSL6 gene with POF. Moreover, the statistical correction for significance by multiple comparisons supports a stronger association with POF. Disease-associated haplotype analysis based on LD analysis suggests the coexistence of causative variants and SNP markers on the same haplotype (26Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes.Nat Genet. 1999; 22: 139-144Crossref PubMed Scopus (1131) Google Scholar, 33Risch N.J. Searching for genetic determinants in the new millennium.Nature. 2000; 405: 847-856Crossref PubMed Scopus (1545) Google Scholar). Thus, causative variants affecting the expression or activity of ACSL6 may exist on the POF-associated haplotype, ht1 “AAGCTC.” To the best of our knowledge, there are as yet no other reports of an association between the ACSL6 gene and POF. Acyl-CoA synthetase (ACS) family proteins are known to catalyze the formation of fatty acyl-CoAs from long-chain fatty acids, CoA, and adenosine triphosphate through their gate domains. These fatty acyl-CoAs are used in multiple pathways, including those for β-oxidation, phospholipid re-acylation (called Lands cycle), and cholesterol ester formation (34Coleman R.A. Lewin T.M. Van Horn C.G. Gonzalez-Baro M.R. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways?.J Nutr. 2002; 132: 2123-2126Crossref PubMed Scopus (244) Google Scholar, 35Hisanaga Y. Ago H. Nakagawa N. Hamada K. Ida K. Yamamoto M. et al.Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.J Biol Chem. 2004; 279: 31717-31726Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar, 36Lands W.E. Stories about acyl chains.Biochim Biophys Acta. 2000; 1483: 1-14Crossref PubMed Scopus (120) Google Scholar). As an acyl-CoA synthetase family member, ACSL6, also called acyl-CoA synthetase 2 (ACS2) or fatty acid-CoA long-chain 6 (FACL6), was first identified and characterized from human erythrocytes (37Malhotra K.T. Malhotra K. Lubin B.H. Kuypers F.A. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.Biochem J. 1999; 344: 135-143Crossref PubMed Scopus (32) Google Scholar), and its crystal structure and physiologic functions in fatty-acid catabolism have been determined (35Hisanaga Y. Ago H. Nakagawa N. Hamada K. Ida K. Yamamoto M. et al.Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.J Biol Chem. 2004; 279: 31717-31726Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar). Acyl-CoA synthetase family proteins initiate the metabolism of both saturated and unsaturated fatty acid with CoA acylation (34Coleman R.A. Lewin T.M. Van Horn C.G. Gonzalez-Baro M.R. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways?.J Nutr. 2002; 132: 2123-2126Crossref PubMed Scopus (244) Google Scholar, 35Hisanaga Y. Ago H. Nakagawa N. Hamada K. Ida K. Yamamoto M. et al.Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.J Biol Chem. 2004; 279: 31717-31726Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar). In particular, ACSL6 has a preference for these substrates, which are generally polyunsaturated fatty acids, including arachidonic acids (AAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) (38Iijima H. Fujino T. Minekura H. Suzuki H. Kang M.J. Yamamoto T. Biochemical studies of two rat acyl-CoA synthetases, ACS1 and ACS2.Eur J Biochem. 1996; 242: 186-190Crossref PubMed Scopus (60) Google Scholar, 39Kang M.J. Fujino T. Sasano H. Minekura H. Yabuki N. Nagura H. et al.A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis.Proc Natl Acad Sci U S A. 1997; 94: 2880-2884Crossref PubMed Scopus (203) Google Scholar, 40Marszalek J.R. Kitidis C. Dararutana A. Lodish H.F. Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth.J Biol Chem. 2004; 279: 23882-23891Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 41Oikawa E. Iijima H. Suzuki T. Sasano H. Sato H. Kamataki A. et al.A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes.J Biochem. 1998; 124: 679-685Crossref PubMed Scopus (123) Google Scholar). It has been reported that saturated free fatty acids (FFAs) induce apoptosis of human ovarian granulosa cells through the metabolites of acyl-CoA forms, suggesting that the effects of saturated FFAs on human ovarian granulosa cells may be a possible mechanism for POF development (42Mu Y.M. Yanase T. Nishi Y. Tanaka A. Saito M. Jin C.H. et al.Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells.Endocrinology. 2001; 142: 3590-3597Crossref PubMed Scopus (204) Google Scholar). In contrast, it was proposed that a polyunsaturated FFA, AA, suppressed the saturated FFA–induced apoptosis of human ovarian granulosa cells through their metabolism by ACS (40Marszalek J.R. Kitidis C. Dararutana A. Lodish H.F. Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth.J Biol Chem. 2004; 279: 23882-23891Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 43Marszalek J.R. Kitidis C. Dirusso C.C. Lodish H.F. Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism.J Biol Chem. 2005; 280: 10817-10826Abstract Full Text Full Text PDF PubMed Scopus (84) Google Scholar). Moreover, this suppressive effect was shown to be involved in the selective acyl-CoA formation of unsaturated fatty acids, such as AA (42Mu Y.M. Yanase T. Nishi Y. Tanaka A. Saito M. Jin C.H. et al.Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells.Endocrinology. 2001; 142: 3590-3597Crossref PubMed Scopus (204) Google Scholar, 44Tang D.G. Guan K.L. Li L. Honn K.V. Chen Y.Q. Rice R.L. et al.Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids.Int J Cancer. 1997; 72: 1078-1087Crossref PubMed Scopus (56) Google Scholar). Taken together, the formation of arachidonoyl-CoA by ACSL6 may be important for the survival of human ovarian granulosa cells. Arachidonic acid is a competitive substrate of three enzymes, ACSL6, cyclooxygenase (COX), and lipoxygenase (LOX) (45Fujimoto Y. Tsunomori M. Sumiya T. Nishida H. Sakuma S. Fujita T. Effects of fatty acyl coenzyme A esters on lipoxygenase and cyclooxygenase metabolism of arachidonic acid in rabbit platelets.Prostaglandins Leukot Essent Fatty Acids. 1995; 52: 255-258Abstract Full Text PDF PubMed Scopus (8) Google Scholar, 46Fuse I. Iwanaga T. Tai H.H. Phorbol ester, 1,2-diacylglycerol, and collagen induce inhibition of arachidonic acid incorporation into phospholipids in human platelets.J Biol Chem. 1989; 264: 3890-3895Abstract Full Text PDF PubMed Google Scholar, 47Oh-ishi S. Yamaki K. Abe M. Tomoda H. Omura S. The acyl-CoA synthetase inhibitor triacsin C enhanced eicosanoid release in leukocytes.Jpn J Pharmacol. 1992; 59: 417-418Crossref PubMed Scopus (23) Google Scholar, 48Kudo I. Murakami M. Phospholipase A2 enzymes.Prostaglandins Other Lipid Mediat. 2002; 68–69: 3-58Crossref PubMed Scopus (653) Google Scholar). The AA/COX pathway is well known to cause inflammation through its metabolites, prostaglandins (49Urade Y. Watanabe K. Hayaishi O. Prostaglandin D, E, and F synthases.J Lipid Mediat Cell Signal. 1995; 12: 257-273Crossref PubMed Scopus (112) Google Scholar, 50Vane J.R. Botting R.M. Anti-inflammatory drugs and their mechanism of action.Inflamm Res. 1998; 47: S78-S87Crossref PubMed Scopus (569) Google Scholar). The AA/LOX pathway is also implicated in inflammatory reactions (51Borgeat P. Biochemistry of the lipoxygenase pathways in neutrophils.Can J Physiol Pharmacol. 1989; 67: 936-942Crossref PubMed Scopus (35) Google Scholar, 52Homaidan F.R. Chakroun I. Haidar H.A. El-Sabban M.E. Protein regulators of eicosanoid synthesis: role in inflammation.Curr Protein Pept Sci. 2002; 3: 467-484Crossref PubMed Scopus (33) Google Scholar). Among AA/LOX products, leukotriene B4 was especially documented to be potent as a lipid inflammatory mediator (53Samuelsson B. Dahlen S.E. Lindgren J.A. Rouzer C.A. Serhan C.N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects.Science. 1987; 237: 1171-1176Crossref PubMed Scopus (1960) Google Scholar, 54Lewis R.A. Austen K.F. Soberman R.J. Leukotrienes and other products of the 5–lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases.New Engl J Med. 1990; 323: 645-655Crossref PubMed Scopus (1162) Google Scholar) and a chemoattractant for leukocytes, including neutrophils, macrophages, monocytes, and eosinophils (55Ford-Hutchinson A.W. Bray M.A. Doig M.V. Shipley M.E. Smith M.J. Leukotriene B. a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes.Nature. 1980; 286: 264-265Crossref PubMed Scopus (1572) Google Scholar, 56Serhan C.N. Prescott S.M. The scent of a phagocyte: advances on leukotriene B4 receptors.J Exp Med. 2000; 192: F5-F8Crossref PubMed Scopus (46) Google Scholar, 57Huang W.W. Garcia-Zepeda E.A. Sauty A. Oettgen H.C. Rothenberg M.E. Luster A.D. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils.J Exp Med. 1998; 188: 1063-1074Crossref PubMed Scopus (133) Google Scholar, 58Tager A.M. Luster A.D. BLT1 and BLT2: the leukotriene B (4) receptors.Prostaglandins Leukot Essent Fatty Acids. 2003; 69: 123-134Abstract Full Text Full Text PDF PubMed Scopus (285) Google Scholar). In addition, an association between autoimmune disease and POF has been proposed (59Hoek A. van Kasteren Y. de Haan-Meulman M. Hooijkaas H. Schoemaker J. Drexhage H.A. Analysis of peripheral blood lymphocyte subsets, NK cells, and delayed type hypersensitivity skin test in patients with premature ovarian failure.Am J Reprod Immunol. 1995; 33: 495-502Crossref PubMed Scopus (42) Google Scholar, 60Chernyshov V.P. Radysh T.V. Gura I.V. Tatarchuk T.P. Khominskaya Z.B. Immune disorders in women with premature ovarian failure in initial period.Am J Reprod Immunol. 2001; 46: 220-225Crossref PubMed Scopus (55) Google Scholar, 61Conway G.S. Clinical manifestations of genetic defects affecting gonadotrophins and their receptors.Clin Endocrinol (Oxf). 1996; 45: 657-663Crossref PubMed Scopus (57) Google Scholar, 62Kalantaridou S.N. Davis S.R. Nelson L.M. Premature ovarian failure.Endocrinol Metab Clin North Am. 1998; 27: 989-1006Abstract Full Text Full Text PDF PubMed Scopus (158) Google Scholar). In particular, ovarian autoimmunity (e.g., oophoritis) was reported to be associated with POF (3Hoek A. Schoemaker J. Drexhage H.A. Premature ovarian failure and ovarian autoimmunity.Endocr Rev. 1997; 18: 107-134Crossref PubMed Scopus (387) Google Scholar, 63Bakalov V.K. Anasti J.N. Calis K.A. Vanderhoof V.H. Premkumar A. Chen S. et al.Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46,XX spontaneous premature ovarian failure.Fertil Steril. 2005; 84: 958-965Abstract Full Text Full Text PDF PubMed Scopus (122) Google Scholar). Therefore, defects in the ACSL6 gene may be one cause of ovarian inflammation by relatively increasing the levels of AA/COX and AA/LOX metabolites, resulting in ovarian dysfunction. In conclusion, we have found a POF-associated gene, ACSL6, and its susceptibility haplotype, ht1 “AAGCTC,” through an LD-based genome-wide association study using dense SNPs. We suggest that the defect in ACSL6 may contribute to POF development through lipid metabolism in the ovarian tissue. This may explain the relationship between POF and autoimmunity. We believe that our findings will be useful in further studies on the pathology and physiology of POF." @default.
- W2078013325 created "2016-06-24" @default.
- W2078013325 creator A5011548690 @default.
- W2078013325 creator A5023951757 @default.
- W2078013325 creator A5034435710 @default.
- W2078013325 creator A5038691490 @default.
- W2078013325 creator A5043580930 @default.
- W2078013325 creator A5047847002 @default.
- W2078013325 date "2009-04-01" @default.
- W2078013325 modified "2023-10-10" @default.
- W2078013325 title "Acyl-CoA synthetase long-chain family member 6 is associated with premature ovarian failure" @default.
- W2078013325 cites W1520069435 @default.
- W2078013325 cites W1551600243 @default.
- W2078013325 cites W1910630598 @default.
- W2078013325 cites W1968552077 @default.
- W2078013325 cites W1970300511 @default.
- W2078013325 cites W1980832959 @default.
- W2078013325 cites W1985110267 @default.
- W2078013325 cites W1991776294 @default.
- W2078013325 cites W1995931984 @default.
- W2078013325 cites W1997561160 @default.
- W2078013325 cites W2000113718 @default.
- W2078013325 cites W2005132573 @default.
- W2078013325 cites W2005271852 @default.
- W2078013325 cites W2009545791 @default.
- W2078013325 cites W2016075273 @default.
- W2078013325 cites W2019829898 @default.
- W2078013325 cites W2022138849 @default.
- W2078013325 cites W2023213942 @default.
- W2078013325 cites W2024176341 @default.
- W2078013325 cites W2034792641 @default.
- W2078013325 cites W2035072955 @default.
- W2078013325 cites W2042413629 @default.
- W2078013325 cites W2046118162 @default.
- W2078013325 cites W2046788035 @default.
- W2078013325 cites W2060181803 @default.
- W2078013325 cites W2063973431 @default.
- W2078013325 cites W2064702379 @default.
- W2078013325 cites W2066669827 @default.
- W2078013325 cites W2070949353 @default.
- W2078013325 cites W2072259978 @default.
- W2078013325 cites W2073079404 @default.
- W2078013325 cites W2073396582 @default.
- W2078013325 cites W2078687201 @default.
- W2078013325 cites W2083497059 @default.
- W2078013325 cites W2084376597 @default.
- W2078013325 cites W2087492032 @default.
- W2078013325 cites W2087848609 @default.
- W2078013325 cites W2094955966 @default.
- W2078013325 cites W2104136026 @default.
- W2078013325 cites W2104216656 @default.
- W2078013325 cites W2106234499 @default.
- W2078013325 cites W2109178214 @default.
- W2078013325 cites W2121308112 @default.
- W2078013325 cites W2124277514 @default.
- W2078013325 cites W2126506673 @default.
- W2078013325 cites W2133449992 @default.
- W2078013325 cites W2142686346 @default.
- W2078013325 cites W2148028300 @default.
- W2078013325 cites W2150100666 @default.
- W2078013325 cites W2152664025 @default.
- W2078013325 cites W2154582742 @default.
- W2078013325 cites W2159819284 @default.
- W2078013325 cites W2161701719 @default.
- W2078013325 cites W2163848995 @default.
- W2078013325 cites W2171595378 @default.
- W2078013325 cites W2414469382 @default.
- W2078013325 cites W4248047006 @default.
- W2078013325 cites W4248185047 @default.
- W2078013325 cites W4250925756 @default.
- W2078013325 doi "https://doi.org/10.1016/j.fertnstert.2008.03.035" @default.
- W2078013325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18555221" @default.
- W2078013325 hasPublicationYear "2009" @default.
- W2078013325 type Work @default.
- W2078013325 sameAs 2078013325 @default.
- W2078013325 citedByCount "8" @default.
- W2078013325 countsByYear W20780133252012 @default.
- W2078013325 countsByYear W20780133252014 @default.
- W2078013325 countsByYear W20780133252016 @default.
- W2078013325 countsByYear W20780133252023 @default.
- W2078013325 crossrefType "journal-article" @default.
- W2078013325 hasAuthorship W2078013325A5011548690 @default.
- W2078013325 hasAuthorship W2078013325A5023951757 @default.
- W2078013325 hasAuthorship W2078013325A5034435710 @default.
- W2078013325 hasAuthorship W2078013325A5038691490 @default.
- W2078013325 hasAuthorship W2078013325A5043580930 @default.
- W2078013325 hasAuthorship W2078013325A5047847002 @default.
- W2078013325 hasBestOaLocation W20780133251 @default.
- W2078013325 hasConcept C126322002 @default.
- W2078013325 hasConcept C2777395788 @default.
- W2078013325 hasConcept C71924100 @default.
- W2078013325 hasConceptScore W2078013325C126322002 @default.
- W2078013325 hasConceptScore W2078013325C2777395788 @default.
- W2078013325 hasConceptScore W2078013325C71924100 @default.
- W2078013325 hasFunder F4320322034 @default.
- W2078013325 hasIssue "4" @default.
- W2078013325 hasLocation W20780133251 @default.
- W2078013325 hasLocation W20780133252 @default.