Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078014809> ?p ?o ?g. }
- W2078014809 endingPage "640" @default.
- W2078014809 startingPage "615" @default.
- W2078014809 abstract "This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation." @default.
- W2078014809 created "2016-06-24" @default.
- W2078014809 creator A5080734185 @default.
- W2078014809 creator A5086643947 @default.
- W2078014809 creator A5091092174 @default.
- W2078014809 date "2007-04-01" @default.
- W2078014809 modified "2023-09-27" @default.
- W2078014809 title "MCMC maximum likelihood for latent state models" @default.
- W2078014809 cites W1511187233 @default.
- W2078014809 cites W1966158039 @default.
- W2078014809 cites W1985500221 @default.
- W2078014809 cites W1990511164 @default.
- W2078014809 cites W1991716021 @default.
- W2078014809 cites W2022306346 @default.
- W2078014809 cites W2023581626 @default.
- W2078014809 cites W2024060531 @default.
- W2078014809 cites W2029846641 @default.
- W2078014809 cites W2042080635 @default.
- W2078014809 cites W2081441334 @default.
- W2078014809 cites W2117999380 @default.
- W2078014809 cites W2118626571 @default.
- W2078014809 cites W2132552502 @default.
- W2078014809 cites W2144246192 @default.
- W2078014809 cites W2146047772 @default.
- W2078014809 cites W2148482557 @default.
- W2078014809 cites W2151065060 @default.
- W2078014809 cites W2169932694 @default.
- W2078014809 cites W3022799777 @default.
- W2078014809 cites W3121290475 @default.
- W2078014809 cites W3123110032 @default.
- W2078014809 cites W3123448183 @default.
- W2078014809 cites W4229638696 @default.
- W2078014809 cites W4232197256 @default.
- W2078014809 cites W4240652971 @default.
- W2078014809 cites W4247329800 @default.
- W2078014809 cites W4250135808 @default.
- W2078014809 cites W4250856143 @default.
- W2078014809 cites W4302422232 @default.
- W2078014809 doi "https://doi.org/10.1016/j.jeconom.2005.11.017" @default.
- W2078014809 hasPublicationYear "2007" @default.
- W2078014809 type Work @default.
- W2078014809 sameAs 2078014809 @default.
- W2078014809 citedByCount "85" @default.
- W2078014809 countsByYear W20780148092012 @default.
- W2078014809 countsByYear W20780148092013 @default.
- W2078014809 countsByYear W20780148092014 @default.
- W2078014809 countsByYear W20780148092015 @default.
- W2078014809 countsByYear W20780148092016 @default.
- W2078014809 countsByYear W20780148092017 @default.
- W2078014809 countsByYear W20780148092018 @default.
- W2078014809 countsByYear W20780148092019 @default.
- W2078014809 countsByYear W20780148092020 @default.
- W2078014809 countsByYear W20780148092021 @default.
- W2078014809 countsByYear W20780148092022 @default.
- W2078014809 crossrefType "journal-article" @default.
- W2078014809 hasAuthorship W2078014809A5080734185 @default.
- W2078014809 hasAuthorship W2078014809A5086643947 @default.
- W2078014809 hasAuthorship W2078014809A5091092174 @default.
- W2078014809 hasBestOaLocation W20780148092 @default.
- W2078014809 hasConcept C105795698 @default.
- W2078014809 hasConcept C111350023 @default.
- W2078014809 hasConcept C11413529 @default.
- W2078014809 hasConcept C126255220 @default.
- W2078014809 hasConcept C149782125 @default.
- W2078014809 hasConcept C167928553 @default.
- W2078014809 hasConcept C185429906 @default.
- W2078014809 hasConcept C19499675 @default.
- W2078014809 hasConcept C28826006 @default.
- W2078014809 hasConcept C33923547 @default.
- W2078014809 hasConcept C41008148 @default.
- W2078014809 hasConcept C51167844 @default.
- W2078014809 hasConcept C85393063 @default.
- W2078014809 hasConcept C89106044 @default.
- W2078014809 hasConcept C91602232 @default.
- W2078014809 hasConcept C98763669 @default.
- W2078014809 hasConceptScore W2078014809C105795698 @default.
- W2078014809 hasConceptScore W2078014809C111350023 @default.
- W2078014809 hasConceptScore W2078014809C11413529 @default.
- W2078014809 hasConceptScore W2078014809C126255220 @default.
- W2078014809 hasConceptScore W2078014809C149782125 @default.
- W2078014809 hasConceptScore W2078014809C167928553 @default.
- W2078014809 hasConceptScore W2078014809C185429906 @default.
- W2078014809 hasConceptScore W2078014809C19499675 @default.
- W2078014809 hasConceptScore W2078014809C28826006 @default.
- W2078014809 hasConceptScore W2078014809C33923547 @default.
- W2078014809 hasConceptScore W2078014809C41008148 @default.
- W2078014809 hasConceptScore W2078014809C51167844 @default.
- W2078014809 hasConceptScore W2078014809C85393063 @default.
- W2078014809 hasConceptScore W2078014809C89106044 @default.
- W2078014809 hasConceptScore W2078014809C91602232 @default.
- W2078014809 hasConceptScore W2078014809C98763669 @default.
- W2078014809 hasIssue "2" @default.
- W2078014809 hasLocation W20780148091 @default.
- W2078014809 hasLocation W20780148092 @default.
- W2078014809 hasOpenAccess W2078014809 @default.
- W2078014809 hasPrimaryLocation W20780148091 @default.
- W2078014809 hasRelatedWork W1573212779 @default.
- W2078014809 hasRelatedWork W2030886140 @default.