Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078014989> ?p ?o ?g. }
- W2078014989 endingPage "115" @default.
- W2078014989 startingPage "99" @default.
- W2078014989 abstract "Differentiation of malignant and benign pulmonary nodules is of paramount clinical importance. Texture features of pulmonary nodules in CT images reflect a powerful character of the malignancy in addition to the geometry-related measures. This study first compared three well-known types of two-dimensional (2D) texture features (Haralick, Gabor, and local binary patterns or local binary pattern features) on CADx of lung nodules using the largest public database founded by Lung Image Database Consortium and Image Database Resource Initiative and then investigated extension from 2D to three-dimensional (3D) space. Quantitative comparison measures were made by the well-established support vector machine (SVM) classifier, the area under the receiver operating characteristic curves (AUC) and the p values from hypothesis t tests. While the three feature types showed about 90% differentiation rate, the Haralick features achieved the highest AUC value of 92.70% at an adequate image slice thickness, where a thinner or thicker thickness will deteriorate the performance due to excessive image noise or loss of axial details. Gain was observed when calculating 2D features on all image slices as compared to the single largest slice. The 3D extension revealed potential gain when an optimal number of directions can be found. All the observations from this systematic investigation study on the three feature types can lead to the conclusions that the Haralick feature type is a better choice, the use of the full 3D data is beneficial, and an adequate tradeoff between image thickness and noise is desired for an optimal CADx performance. These conclusions provide a guideline for further research on lung nodule differentiation using CT imaging." @default.
- W2078014989 created "2016-06-24" @default.
- W2078014989 creator A5009266065 @default.
- W2078014989 creator A5014486696 @default.
- W2078014989 creator A5018527188 @default.
- W2078014989 creator A5022418809 @default.
- W2078014989 creator A5034743810 @default.
- W2078014989 creator A5054850777 @default.
- W2078014989 creator A5055021484 @default.
- W2078014989 creator A5066599847 @default.
- W2078014989 creator A5066990241 @default.
- W2078014989 creator A5081905302 @default.
- W2078014989 date "2014-08-13" @default.
- W2078014989 modified "2023-09-29" @default.
- W2078014989 title "Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules" @default.
- W2078014989 cites W1596717185 @default.
- W2078014989 cites W1914401667 @default.
- W2078014989 cites W1974122280 @default.
- W2078014989 cites W1986649315 @default.
- W2078014989 cites W1999257979 @default.
- W2078014989 cites W1999529880 @default.
- W2078014989 cites W2005134193 @default.
- W2078014989 cites W2007522854 @default.
- W2078014989 cites W2008428440 @default.
- W2078014989 cites W2012253355 @default.
- W2078014989 cites W2019378246 @default.
- W2078014989 cites W2028262942 @default.
- W2078014989 cites W2039051707 @default.
- W2078014989 cites W2044465660 @default.
- W2078014989 cites W2074911873 @default.
- W2078014989 cites W2080883421 @default.
- W2078014989 cites W2094056275 @default.
- W2078014989 cites W2107566856 @default.
- W2078014989 cites W2112162870 @default.
- W2078014989 cites W2114276475 @default.
- W2078014989 cites W2117346638 @default.
- W2078014989 cites W2117590190 @default.
- W2078014989 cites W2122023903 @default.
- W2078014989 cites W2127334500 @default.
- W2078014989 cites W2128728535 @default.
- W2078014989 cites W2136725088 @default.
- W2078014989 cites W2141646243 @default.
- W2078014989 cites W2147473587 @default.
- W2078014989 cites W2158303110 @default.
- W2078014989 cites W2163808566 @default.
- W2078014989 cites W2172196609 @default.
- W2078014989 cites W2317305062 @default.
- W2078014989 cites W2547947767 @default.
- W2078014989 cites W4296142362 @default.
- W2078014989 cites W70082368 @default.
- W2078014989 doi "https://doi.org/10.1007/s10278-014-9718-8" @default.
- W2078014989 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4305062" @default.
- W2078014989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25117512" @default.
- W2078014989 hasPublicationYear "2014" @default.
- W2078014989 type Work @default.
- W2078014989 sameAs 2078014989 @default.
- W2078014989 citedByCount "212" @default.
- W2078014989 countsByYear W20780149892015 @default.
- W2078014989 countsByYear W20780149892016 @default.
- W2078014989 countsByYear W20780149892017 @default.
- W2078014989 countsByYear W20780149892018 @default.
- W2078014989 countsByYear W20780149892019 @default.
- W2078014989 countsByYear W20780149892020 @default.
- W2078014989 countsByYear W20780149892021 @default.
- W2078014989 countsByYear W20780149892022 @default.
- W2078014989 countsByYear W20780149892023 @default.
- W2078014989 crossrefType "journal-article" @default.
- W2078014989 hasAuthorship W2078014989A5009266065 @default.
- W2078014989 hasAuthorship W2078014989A5014486696 @default.
- W2078014989 hasAuthorship W2078014989A5018527188 @default.
- W2078014989 hasAuthorship W2078014989A5022418809 @default.
- W2078014989 hasAuthorship W2078014989A5034743810 @default.
- W2078014989 hasAuthorship W2078014989A5054850777 @default.
- W2078014989 hasAuthorship W2078014989A5055021484 @default.
- W2078014989 hasAuthorship W2078014989A5066599847 @default.
- W2078014989 hasAuthorship W2078014989A5066990241 @default.
- W2078014989 hasAuthorship W2078014989A5081905302 @default.
- W2078014989 hasBestOaLocation W20780149892 @default.
- W2078014989 hasConcept C115961682 @default.
- W2078014989 hasConcept C119857082 @default.
- W2078014989 hasConcept C12267149 @default.
- W2078014989 hasConcept C138885662 @default.
- W2078014989 hasConcept C153180895 @default.
- W2078014989 hasConcept C154945302 @default.
- W2078014989 hasConcept C2776401178 @default.
- W2078014989 hasConcept C2779549770 @default.
- W2078014989 hasConcept C41008148 @default.
- W2078014989 hasConcept C41895202 @default.
- W2078014989 hasConcept C52622490 @default.
- W2078014989 hasConcept C53533937 @default.
- W2078014989 hasConcept C58471807 @default.
- W2078014989 hasConcept C75294576 @default.
- W2078014989 hasConcept C83665646 @default.
- W2078014989 hasConcept C87335442 @default.
- W2078014989 hasConcept C95623464 @default.
- W2078014989 hasConceptScore W2078014989C115961682 @default.
- W2078014989 hasConceptScore W2078014989C119857082 @default.
- W2078014989 hasConceptScore W2078014989C12267149 @default.