Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078019847> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2078019847 abstract "During daily work in hospitals a large amount of clinical data is produced each day. Totally computerized patient records are not yet widely used but a large part of essential information is already stored on computer files. These include laboratory test results, diagnoses, codes for operations, codes of histopathological diagnoses and maybe even the patient's medication. Accordingly, these databases include much clinical knowledge that would be useful for clinicians. Laboratories try to support clinicians by producing reference values for laboratory tests. It is, of course, necessary information but, however, it does not give very much information about the weight of evidence that an abnormal laboratory test will give in special clinical settings. We have developed a software package - DiagaiD - in order to build a smart link between patient databases and clinicians. It utilizes neural network-based machine learning techniques and can produce decision support which meets the special needs of clinicians. From example cases it can learn clinically relevant transformations from original numeric values to logical values. By using data transformation together with a single layer perceptron it is possible to build nonlinear models from a set of preclassified example cases. In this paper, we use two small datasets to show how this scheme works in the diagnosis of acute appendicitis and in the diagnosis of myocardial infarction. Results are compared with those obtained using logistic regression or backpropagation neural networks. The performance of our neuro-fuzzy tool seemed to be slightly better in these two materials but the differences did not reach statistical significance." @default.
- W2078019847 created "2016-06-24" @default.
- W2078019847 creator A5002698911 @default.
- W2078019847 creator A5043661954 @default.
- W2078019847 creator A5058940927 @default.
- W2078019847 creator A5077592296 @default.
- W2078019847 creator A5083240159 @default.
- W2078019847 date "1995-01-01" @default.
- W2078019847 modified "2023-10-16" @default.
- W2078019847 title "Using data preprocessing and single layer perceptron to analyze laboratory data" @default.
- W2078019847 cites W1153074750 @default.
- W2078019847 cites W1498436455 @default.
- W2078019847 cites W1974307073 @default.
- W2078019847 cites W1990816811 @default.
- W2078019847 cites W2017096453 @default.
- W2078019847 cites W2049991652 @default.
- W2078019847 cites W2051571087 @default.
- W2078019847 cites W2055956929 @default.
- W2078019847 cites W2068591687 @default.
- W2078019847 cites W2071391742 @default.
- W2078019847 cites W2104960492 @default.
- W2078019847 doi "https://doi.org/10.3109/00365519509088453" @default.
- W2078019847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7569750" @default.
- W2078019847 hasPublicationYear "1995" @default.
- W2078019847 type Work @default.
- W2078019847 sameAs 2078019847 @default.
- W2078019847 citedByCount "8" @default.
- W2078019847 countsByYear W20780198472022 @default.
- W2078019847 crossrefType "journal-article" @default.
- W2078019847 hasAuthorship W2078019847A5002698911 @default.
- W2078019847 hasAuthorship W2078019847A5043661954 @default.
- W2078019847 hasAuthorship W2078019847A5058940927 @default.
- W2078019847 hasAuthorship W2078019847A5077592296 @default.
- W2078019847 hasAuthorship W2078019847A5083240159 @default.
- W2078019847 hasConcept C10551718 @default.
- W2078019847 hasConcept C119857082 @default.
- W2078019847 hasConcept C124101348 @default.
- W2078019847 hasConcept C142724271 @default.
- W2078019847 hasConcept C154945302 @default.
- W2078019847 hasConcept C16910744 @default.
- W2078019847 hasConcept C169903167 @default.
- W2078019847 hasConcept C177264268 @default.
- W2078019847 hasConcept C179717631 @default.
- W2078019847 hasConcept C199360897 @default.
- W2078019847 hasConcept C2777904410 @default.
- W2078019847 hasConcept C34736171 @default.
- W2078019847 hasConcept C41008148 @default.
- W2078019847 hasConcept C50644808 @default.
- W2078019847 hasConcept C534262118 @default.
- W2078019847 hasConcept C60908668 @default.
- W2078019847 hasConcept C71924100 @default.
- W2078019847 hasConceptScore W2078019847C10551718 @default.
- W2078019847 hasConceptScore W2078019847C119857082 @default.
- W2078019847 hasConceptScore W2078019847C124101348 @default.
- W2078019847 hasConceptScore W2078019847C142724271 @default.
- W2078019847 hasConceptScore W2078019847C154945302 @default.
- W2078019847 hasConceptScore W2078019847C16910744 @default.
- W2078019847 hasConceptScore W2078019847C169903167 @default.
- W2078019847 hasConceptScore W2078019847C177264268 @default.
- W2078019847 hasConceptScore W2078019847C179717631 @default.
- W2078019847 hasConceptScore W2078019847C199360897 @default.
- W2078019847 hasConceptScore W2078019847C2777904410 @default.
- W2078019847 hasConceptScore W2078019847C34736171 @default.
- W2078019847 hasConceptScore W2078019847C41008148 @default.
- W2078019847 hasConceptScore W2078019847C50644808 @default.
- W2078019847 hasConceptScore W2078019847C534262118 @default.
- W2078019847 hasConceptScore W2078019847C60908668 @default.
- W2078019847 hasConceptScore W2078019847C71924100 @default.
- W2078019847 hasLocation W20780198471 @default.
- W2078019847 hasLocation W20780198472 @default.
- W2078019847 hasOpenAccess W2078019847 @default.
- W2078019847 hasPrimaryLocation W20780198471 @default.
- W2078019847 hasRelatedWork W2113904186 @default.
- W2078019847 hasRelatedWork W2140225375 @default.
- W2078019847 hasRelatedWork W2512589305 @default.
- W2078019847 hasRelatedWork W2992775743 @default.
- W2078019847 hasRelatedWork W3044471845 @default.
- W2078019847 hasRelatedWork W3137020110 @default.
- W2078019847 hasRelatedWork W3206202133 @default.
- W2078019847 hasRelatedWork W4206558754 @default.
- W2078019847 hasRelatedWork W4210555899 @default.
- W2078019847 hasRelatedWork W2129870392 @default.
- W2078019847 isParatext "false" @default.
- W2078019847 isRetracted "false" @default.
- W2078019847 magId "2078019847" @default.
- W2078019847 workType "article" @default.