Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078020980> ?p ?o ?g. }
- W2078020980 endingPage "269" @default.
- W2078020980 startingPage "265" @default.
- W2078020980 abstract "To determine the utility of an artificial neural network (ANN) in predicting cardiovascular (CV) death in patients with heart failure (HF).ANNs use weighted inputs in multiple layers of mathematical connections in order to predict outcomes from multiple risk markers. This approach has not been applied in the context of cardiopulmonary exercise testing (CPX) to predict risk in patients with HF.2635 patients with HF underwent CPX and were followed for a mean of 29 ± 30 months. The sample was divided randomly into ANN training and testing sets to predict CV mortality. Peak VO2, VE/VCO2 slope, heart rate recovery, oxygen uptake efficiency slope, and end-tidal CO2 pressure were included in the model. The predictive accuracy of the ANN was compared to logistic regression (LR) and a Cox proportional hazards (PH) score. A multi-layer feed-forward ANN was used and was tested with a single hidden layer containing a varying number of hidden neurons.There were 291 CV deaths during the follow-up. An abnormal VE/VCO2 slope was the strongest predictor of CV mortality using conventional PH analysis (hazard ratio 3.04; 95% CI 2.2-4.2, p<0.001). After training, the ANN was more accurate in predicting CV mortality compared to LR and PH; ROC areas for the ANN, LR, and PH models were 0.72, 0.70, and 0.69, respectively. Age and BMI-adjusted odds ratios were 4.2, 2.6, and 2.9, for ANN, LR, and PH, respectively.An ANN model slightly improves upon conventional methods for estimating CV mortality risk using established CPX responses." @default.
- W2078020980 created "2016-06-24" @default.
- W2078020980 creator A5021405108 @default.
- W2078020980 creator A5022076552 @default.
- W2078020980 creator A5023656065 @default.
- W2078020980 creator A5036160301 @default.
- W2078020980 creator A5049345749 @default.
- W2078020980 creator A5054371215 @default.
- W2078020980 creator A5059384612 @default.
- W2078020980 creator A5075711252 @default.
- W2078020980 creator A5084157204 @default.
- W2078020980 creator A5088792900 @default.
- W2078020980 creator A5090838597 @default.
- W2078020980 creator A5091155398 @default.
- W2078020980 date "2014-02-01" @default.
- W2078020980 modified "2023-10-17" @default.
- W2078020980 title "A neural network approach to predicting outcomes in heart failure using cardiopulmonary exercise testing" @default.
- W2078020980 cites W1981976602 @default.
- W2078020980 cites W1992305776 @default.
- W2078020980 cites W1994884548 @default.
- W2078020980 cites W2007616276 @default.
- W2078020980 cites W2010069697 @default.
- W2078020980 cites W2013091772 @default.
- W2078020980 cites W2026943567 @default.
- W2078020980 cites W2031988396 @default.
- W2078020980 cites W2035082412 @default.
- W2078020980 cites W2040767893 @default.
- W2078020980 cites W2045033514 @default.
- W2078020980 cites W2061393859 @default.
- W2078020980 cites W2062848325 @default.
- W2078020980 cites W2070683645 @default.
- W2078020980 cites W2070767077 @default.
- W2078020980 cites W2071697087 @default.
- W2078020980 cites W2074602210 @default.
- W2078020980 cites W2079132293 @default.
- W2078020980 cites W2079722819 @default.
- W2078020980 cites W2084745706 @default.
- W2078020980 cites W2087407895 @default.
- W2078020980 cites W2092579552 @default.
- W2078020980 cites W2101238208 @default.
- W2078020980 cites W2103698882 @default.
- W2078020980 cites W2104890527 @default.
- W2078020980 cites W2107813778 @default.
- W2078020980 cites W2115011142 @default.
- W2078020980 cites W2121394390 @default.
- W2078020980 cites W2139034829 @default.
- W2078020980 cites W2144243947 @default.
- W2078020980 cites W2147726255 @default.
- W2078020980 cites W2152826693 @default.
- W2078020980 cites W2155482699 @default.
- W2078020980 cites W2167651746 @default.
- W2078020980 cites W2170057357 @default.
- W2078020980 cites W2543050600 @default.
- W2078020980 cites W4244780900 @default.
- W2078020980 doi "https://doi.org/10.1016/j.ijcard.2013.12.031" @default.
- W2078020980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24387896" @default.
- W2078020980 hasPublicationYear "2014" @default.
- W2078020980 type Work @default.
- W2078020980 sameAs 2078020980 @default.
- W2078020980 citedByCount "39" @default.
- W2078020980 countsByYear W20780209802014 @default.
- W2078020980 countsByYear W20780209802015 @default.
- W2078020980 countsByYear W20780209802016 @default.
- W2078020980 countsByYear W20780209802017 @default.
- W2078020980 countsByYear W20780209802018 @default.
- W2078020980 countsByYear W20780209802019 @default.
- W2078020980 countsByYear W20780209802020 @default.
- W2078020980 countsByYear W20780209802021 @default.
- W2078020980 countsByYear W20780209802022 @default.
- W2078020980 countsByYear W20780209802023 @default.
- W2078020980 crossrefType "journal-article" @default.
- W2078020980 hasAuthorship W2078020980A5021405108 @default.
- W2078020980 hasAuthorship W2078020980A5022076552 @default.
- W2078020980 hasAuthorship W2078020980A5023656065 @default.
- W2078020980 hasAuthorship W2078020980A5036160301 @default.
- W2078020980 hasAuthorship W2078020980A5049345749 @default.
- W2078020980 hasAuthorship W2078020980A5054371215 @default.
- W2078020980 hasAuthorship W2078020980A5059384612 @default.
- W2078020980 hasAuthorship W2078020980A5075711252 @default.
- W2078020980 hasAuthorship W2078020980A5084157204 @default.
- W2078020980 hasAuthorship W2078020980A5088792900 @default.
- W2078020980 hasAuthorship W2078020980A5090838597 @default.
- W2078020980 hasAuthorship W2078020980A5091155398 @default.
- W2078020980 hasConcept C119857082 @default.
- W2078020980 hasConcept C126322002 @default.
- W2078020980 hasConcept C151730666 @default.
- W2078020980 hasConcept C151956035 @default.
- W2078020980 hasConcept C164705383 @default.
- W2078020980 hasConcept C207103383 @default.
- W2078020980 hasConcept C2778198053 @default.
- W2078020980 hasConcept C2779343474 @default.
- W2078020980 hasConcept C41008148 @default.
- W2078020980 hasConcept C44249647 @default.
- W2078020980 hasConcept C50382708 @default.
- W2078020980 hasConcept C50644808 @default.
- W2078020980 hasConcept C58471807 @default.
- W2078020980 hasConcept C71924100 @default.
- W2078020980 hasConcept C86803240 @default.