Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078021232> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2078021232 abstract "We give some general concepts and results for totally geodesic foliations &~ on complete Riemannian manifolds. In particular, we reduce the problem to that of a generalization of the theory of principal connections. This enables us to show that the global geometry of ^~ is related to certain sheaves of germs of local Killing vector fields for the Riemannian structure along the leaves. Further, we define a cohomology group H?g, and natural mappings from Ht* into the de Rham cohomologies of the leaves, such that the characteristic classes in Ht*g are mapped to the characteristic classes of the leaves. Introduction. A foliation _ 7 on a Riemannian manifold M, is said to be totally geodesic if each geodesic of M is everywhere or nowhere tangent to ^ 7 The different aspects of such foliations have been examined by many authors; for different approaches and more references, see for instance [14], [10], [1] and [4]. In particular, the codimension one case has been classified [12], and there is a homological classification of the dimension one case [28]. The purpose of this paper is to apply, to totally geodesic foliations of arbitrary dimension, the techniques developed in the theory of Riemannian foliations, and in particular, the works of Molino [16] [21]. Recall that a foliation ^ on a manifold M is Riemannian if there exists a Riemannian metric on M such that ^ can be defined by local Riemannian surmersions [23]. Equivalently, ^~ is Riemannian if M possesses a Riemannian metric whose geodesies are everywhere or nowhere perpendicular to ^ Ί Riemannian foliations have been extensively studied, and in particular, there is a strong structure theorem [20]. Given the evident analogy between totally geodesic and Riemannian foliations, it is not surprising that there are many concepts and results from the Riemannian case that find similar expression in the totally geodesic situation. Indeed, by pursuing this approach one obtains a good geometric description and a useful cohomology group. A first application of this work to the dimension ^ 3 cases is given in [7]. In collaboration with E. Ghys, we have given a detailed account of totally geodesic foliations on 4-manifolds [9]." @default.
- W2078021232 created "2016-06-24" @default.
- W2078021232 creator A5032893071 @default.
- W2078021232 date "1986-01-01" @default.
- W2078021232 modified "2023-09-25" @default.
- W2078021232 title "A general description of totally geodesic foliations" @default.
- W2078021232 cites W1494377582 @default.
- W2078021232 cites W1965854369 @default.
- W2078021232 cites W1970659463 @default.
- W2078021232 cites W1976818088 @default.
- W2078021232 cites W2016547824 @default.
- W2078021232 cites W2017019418 @default.
- W2078021232 cites W2021148405 @default.
- W2078021232 cites W2037424685 @default.
- W2078021232 cites W207099007 @default.
- W2078021232 cites W2075274495 @default.
- W2078021232 cites W2085901784 @default.
- W2078021232 cites W2313083616 @default.
- W2078021232 cites W2319664389 @default.
- W2078021232 cites W2326202425 @default.
- W2078021232 cites W2603800186 @default.
- W2078021232 cites W378113248 @default.
- W2078021232 doi "https://doi.org/10.2748/tmj/1178228535" @default.
- W2078021232 hasPublicationYear "1986" @default.
- W2078021232 type Work @default.
- W2078021232 sameAs 2078021232 @default.
- W2078021232 citedByCount "18" @default.
- W2078021232 countsByYear W20780212322014 @default.
- W2078021232 countsByYear W20780212322015 @default.
- W2078021232 countsByYear W20780212322016 @default.
- W2078021232 countsByYear W20780212322018 @default.
- W2078021232 countsByYear W20780212322019 @default.
- W2078021232 countsByYear W20780212322021 @default.
- W2078021232 countsByYear W20780212322022 @default.
- W2078021232 countsByYear W20780212322023 @default.
- W2078021232 crossrefType "journal-article" @default.
- W2078021232 hasAuthorship W2078021232A5032893071 @default.
- W2078021232 hasBestOaLocation W20780212321 @default.
- W2078021232 hasConcept C162269530 @default.
- W2078021232 hasConcept C165818556 @default.
- W2078021232 hasConcept C202444582 @default.
- W2078021232 hasConcept C2524010 @default.
- W2078021232 hasConcept C3019300132 @default.
- W2078021232 hasConcept C33923547 @default.
- W2078021232 hasConceptScore W2078021232C162269530 @default.
- W2078021232 hasConceptScore W2078021232C165818556 @default.
- W2078021232 hasConceptScore W2078021232C202444582 @default.
- W2078021232 hasConceptScore W2078021232C2524010 @default.
- W2078021232 hasConceptScore W2078021232C3019300132 @default.
- W2078021232 hasConceptScore W2078021232C33923547 @default.
- W2078021232 hasIssue "1" @default.
- W2078021232 hasLocation W20780212321 @default.
- W2078021232 hasOpenAccess W2078021232 @default.
- W2078021232 hasPrimaryLocation W20780212321 @default.
- W2078021232 hasRelatedWork W2031567199 @default.
- W2078021232 hasRelatedWork W2077082923 @default.
- W2078021232 hasRelatedWork W2077633414 @default.
- W2078021232 hasRelatedWork W2950763842 @default.
- W2078021232 hasRelatedWork W3102723436 @default.
- W2078021232 hasRelatedWork W3168590261 @default.
- W2078021232 hasRelatedWork W3188870710 @default.
- W2078021232 hasRelatedWork W4214515805 @default.
- W2078021232 hasRelatedWork W4298899320 @default.
- W2078021232 hasRelatedWork W4360593307 @default.
- W2078021232 hasVolume "38" @default.
- W2078021232 isParatext "false" @default.
- W2078021232 isRetracted "false" @default.
- W2078021232 magId "2078021232" @default.
- W2078021232 workType "article" @default.