Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078025949> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2078025949 abstract "This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method." @default.
- W2078025949 created "2016-06-24" @default.
- W2078025949 creator A5034095159 @default.
- W2078025949 creator A5055128383 @default.
- W2078025949 creator A5062844207 @default.
- W2078025949 creator A5083626840 @default.
- W2078025949 date "2014-06-01" @default.
- W2078025949 modified "2023-09-22" @default.
- W2078025949 title "Activity recognition using binary tree SVM" @default.
- W2078025949 cites W1983705368 @default.
- W2078025949 cites W1993229407 @default.
- W2078025949 cites W2010399676 @default.
- W2078025949 cites W2024868105 @default.
- W2078025949 cites W2064851185 @default.
- W2078025949 cites W2098339052 @default.
- W2078025949 cites W2101194540 @default.
- W2078025949 cites W2114361838 @default.
- W2078025949 cites W2126574503 @default.
- W2078025949 cites W2134787522 @default.
- W2078025949 cites W2142194269 @default.
- W2078025949 cites W2163292664 @default.
- W2078025949 cites W2166294429 @default.
- W2078025949 doi "https://doi.org/10.1109/ssp.2014.6884622" @default.
- W2078025949 hasPublicationYear "2014" @default.
- W2078025949 type Work @default.
- W2078025949 sameAs 2078025949 @default.
- W2078025949 citedByCount "3" @default.
- W2078025949 countsByYear W20780259492016 @default.
- W2078025949 countsByYear W20780259492018 @default.
- W2078025949 countsByYear W20780259492020 @default.
- W2078025949 crossrefType "proceedings-article" @default.
- W2078025949 hasAuthorship W2078025949A5034095159 @default.
- W2078025949 hasAuthorship W2078025949A5055128383 @default.
- W2078025949 hasAuthorship W2078025949A5062844207 @default.
- W2078025949 hasAuthorship W2078025949A5083626840 @default.
- W2078025949 hasBestOaLocation W20780259492 @default.
- W2078025949 hasConcept C11413529 @default.
- W2078025949 hasConcept C119857082 @default.
- W2078025949 hasConcept C121687571 @default.
- W2078025949 hasConcept C12267149 @default.
- W2078025949 hasConcept C151730666 @default.
- W2078025949 hasConcept C153180895 @default.
- W2078025949 hasConcept C154945302 @default.
- W2078025949 hasConcept C197855036 @default.
- W2078025949 hasConcept C2779343474 @default.
- W2078025949 hasConcept C41008148 @default.
- W2078025949 hasConcept C52622490 @default.
- W2078025949 hasConcept C66905080 @default.
- W2078025949 hasConcept C86803240 @default.
- W2078025949 hasConcept C95623464 @default.
- W2078025949 hasConceptScore W2078025949C11413529 @default.
- W2078025949 hasConceptScore W2078025949C119857082 @default.
- W2078025949 hasConceptScore W2078025949C121687571 @default.
- W2078025949 hasConceptScore W2078025949C12267149 @default.
- W2078025949 hasConceptScore W2078025949C151730666 @default.
- W2078025949 hasConceptScore W2078025949C153180895 @default.
- W2078025949 hasConceptScore W2078025949C154945302 @default.
- W2078025949 hasConceptScore W2078025949C197855036 @default.
- W2078025949 hasConceptScore W2078025949C2779343474 @default.
- W2078025949 hasConceptScore W2078025949C41008148 @default.
- W2078025949 hasConceptScore W2078025949C52622490 @default.
- W2078025949 hasConceptScore W2078025949C66905080 @default.
- W2078025949 hasConceptScore W2078025949C86803240 @default.
- W2078025949 hasConceptScore W2078025949C95623464 @default.
- W2078025949 hasLocation W20780259491 @default.
- W2078025949 hasLocation W20780259492 @default.
- W2078025949 hasOpenAccess W2078025949 @default.
- W2078025949 hasPrimaryLocation W20780259491 @default.
- W2078025949 hasRelatedWork W1526351492 @default.
- W2078025949 hasRelatedWork W1984981822 @default.
- W2078025949 hasRelatedWork W1985487944 @default.
- W2078025949 hasRelatedWork W1990346607 @default.
- W2078025949 hasRelatedWork W2005276930 @default.
- W2078025949 hasRelatedWork W2050794580 @default.
- W2078025949 hasRelatedWork W2073716350 @default.
- W2078025949 hasRelatedWork W2098418911 @default.
- W2078025949 hasRelatedWork W2103417570 @default.
- W2078025949 hasRelatedWork W2140825325 @default.
- W2078025949 hasRelatedWork W2354567940 @default.
- W2078025949 hasRelatedWork W2365764082 @default.
- W2078025949 hasRelatedWork W2368950954 @default.
- W2078025949 hasRelatedWork W2370696360 @default.
- W2078025949 hasRelatedWork W2393878216 @default.
- W2078025949 hasRelatedWork W2407863771 @default.
- W2078025949 hasRelatedWork W2740003004 @default.
- W2078025949 hasRelatedWork W3158952099 @default.
- W2078025949 hasRelatedWork W891100967 @default.
- W2078025949 hasRelatedWork W2400088669 @default.
- W2078025949 isParatext "false" @default.
- W2078025949 isRetracted "false" @default.
- W2078025949 magId "2078025949" @default.
- W2078025949 workType "article" @default.