Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078082181> ?p ?o ?g. }
- W2078082181 endingPage "3528" @default.
- W2078082181 startingPage "3509" @default.
- W2078082181 abstract "A new method of data augmentation for binary and multinomial logit models is described. First, the latent utilities are introduced as auxiliary latent variables, leading to a latent model which is linear in the unknown parameters, but involves errors from the type I extreme value distribution. Second, for each error term the density of this distribution is approximated by a mixture of normal distributions, and the component indicators in these mixtures are introduced as further latent variables. This leads to Markov chain Monte Carlo estimation based on a convenient auxiliary mixture sampler that draws from standard distributions like normal or exponential distributions and, in contrast to more common Metropolis–Hastings approaches, does not require any tuning. It is shown how the auxiliary mixture sampler is implemented for binary or multinomial logit models, and it is demonstrated how to extend the sampler to mixed effect models and time-varying parameter models for binary and categorical data. Finally, an application to Austrian labor market data is discussed." @default.
- W2078082181 created "2016-06-24" @default.
- W2078082181 creator A5027832388 @default.
- W2078082181 creator A5051060321 @default.
- W2078082181 date "2007-04-01" @default.
- W2078082181 modified "2023-10-16" @default.
- W2078082181 title "Auxiliary mixture sampling with applications to logistic models" @default.
- W2078082181 cites W1492534149 @default.
- W2078082181 cites W1584127072 @default.
- W2078082181 cites W1970552113 @default.
- W2078082181 cites W1971932180 @default.
- W2078082181 cites W1975911643 @default.
- W2078082181 cites W1978900605 @default.
- W2078082181 cites W1985037657 @default.
- W2078082181 cites W1994823593 @default.
- W2078082181 cites W2009632219 @default.
- W2078082181 cites W2025183033 @default.
- W2078082181 cites W2025262040 @default.
- W2078082181 cites W2039256638 @default.
- W2078082181 cites W2051817458 @default.
- W2078082181 cites W2053633338 @default.
- W2078082181 cites W2063009186 @default.
- W2078082181 cites W2063478550 @default.
- W2078082181 cites W2071308900 @default.
- W2078082181 cites W2079672223 @default.
- W2078082181 cites W2114455774 @default.
- W2078082181 cites W2121448470 @default.
- W2078082181 cites W2124959983 @default.
- W2078082181 cites W2128266748 @default.
- W2078082181 cites W2137344397 @default.
- W2078082181 cites W2152135597 @default.
- W2078082181 cites W2170481316 @default.
- W2078082181 cites W2171074980 @default.
- W2078082181 cites W2334370562 @default.
- W2078082181 cites W2506637906 @default.
- W2078082181 cites W3121804411 @default.
- W2078082181 cites W4236649012 @default.
- W2078082181 cites W4242611672 @default.
- W2078082181 cites W4251422143 @default.
- W2078082181 doi "https://doi.org/10.1016/j.csda.2006.10.006" @default.
- W2078082181 hasPublicationYear "2007" @default.
- W2078082181 type Work @default.
- W2078082181 sameAs 2078082181 @default.
- W2078082181 citedByCount "76" @default.
- W2078082181 countsByYear W20780821812012 @default.
- W2078082181 countsByYear W20780821812013 @default.
- W2078082181 countsByYear W20780821812014 @default.
- W2078082181 countsByYear W20780821812015 @default.
- W2078082181 countsByYear W20780821812016 @default.
- W2078082181 countsByYear W20780821812017 @default.
- W2078082181 countsByYear W20780821812018 @default.
- W2078082181 countsByYear W20780821812019 @default.
- W2078082181 countsByYear W20780821812020 @default.
- W2078082181 countsByYear W20780821812021 @default.
- W2078082181 countsByYear W20780821812022 @default.
- W2078082181 countsByYear W20780821812023 @default.
- W2078082181 crossrefType "journal-article" @default.
- W2078082181 hasAuthorship W2078082181A5027832388 @default.
- W2078082181 hasAuthorship W2078082181A5051060321 @default.
- W2078082181 hasConcept C105795698 @default.
- W2078082181 hasConcept C111350023 @default.
- W2078082181 hasConcept C117568660 @default.
- W2078082181 hasConcept C149782125 @default.
- W2078082181 hasConcept C192065140 @default.
- W2078082181 hasConcept C19499675 @default.
- W2078082181 hasConcept C197055811 @default.
- W2078082181 hasConcept C2779190172 @default.
- W2078082181 hasConcept C28826006 @default.
- W2078082181 hasConcept C33923547 @default.
- W2078082181 hasConcept C48372109 @default.
- W2078082181 hasConcept C51167844 @default.
- W2078082181 hasConcept C5274069 @default.
- W2078082181 hasConcept C55974624 @default.
- W2078082181 hasConcept C56672385 @default.
- W2078082181 hasConcept C61224824 @default.
- W2078082181 hasConcept C65965080 @default.
- W2078082181 hasConcept C94375191 @default.
- W2078082181 hasConceptScore W2078082181C105795698 @default.
- W2078082181 hasConceptScore W2078082181C111350023 @default.
- W2078082181 hasConceptScore W2078082181C117568660 @default.
- W2078082181 hasConceptScore W2078082181C149782125 @default.
- W2078082181 hasConceptScore W2078082181C192065140 @default.
- W2078082181 hasConceptScore W2078082181C19499675 @default.
- W2078082181 hasConceptScore W2078082181C197055811 @default.
- W2078082181 hasConceptScore W2078082181C2779190172 @default.
- W2078082181 hasConceptScore W2078082181C28826006 @default.
- W2078082181 hasConceptScore W2078082181C33923547 @default.
- W2078082181 hasConceptScore W2078082181C48372109 @default.
- W2078082181 hasConceptScore W2078082181C51167844 @default.
- W2078082181 hasConceptScore W2078082181C5274069 @default.
- W2078082181 hasConceptScore W2078082181C55974624 @default.
- W2078082181 hasConceptScore W2078082181C56672385 @default.
- W2078082181 hasConceptScore W2078082181C61224824 @default.
- W2078082181 hasConceptScore W2078082181C65965080 @default.
- W2078082181 hasConceptScore W2078082181C94375191 @default.
- W2078082181 hasIssue "7" @default.
- W2078082181 hasLocation W20780821811 @default.
- W2078082181 hasOpenAccess W2078082181 @default.