Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078115938> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2078115938 endingPage "422" @default.
- W2078115938 startingPage "409" @default.
- W2078115938 abstract "Chest radiologists rely on the segmentation and quantificational analysis of ground-glass opacities (GGO) to perform imaging diagnoses that evaluate the disease severity or recovery stages of diffuse parenchymal lung diseases. However, it is computationally difficult to segment and analyze patterns of GGO while compared with other lung diseases, since GGO usually do not have clear boundaries. In this paper, we present a new approach which automatically segments GGO in lung computed tomography (CT) images using algorithms derived from Markov random field theory. Further, we systematically evaluate the performance of the algorithms in segmenting GGO in lung CT images under different situations. CT image studies from 41 patients with diffuse lung diseases were enrolled in this research. The local distributions were modeled with both simple and adaptive (AMAP) models of maximum a posteriori (MAP). For best segmentation, we used the simulated annealing algorithm with a Gibbs sampler to solve the combinatorial optimization problem of MAP estimators, and we applied a knowledge-guided strategy to reduce false positive regions. We achieved AMAP-based GGO segmentation results of 86.94%, 94.33%, and 94.06% in average sensitivity, specificity, and accuracy, respectively, and we evaluated the performance using radiologists’ subjective evaluation and quantificational analysis and diagnosis. We also compared the results of AMAP-based GGO segmentation with those of support vector machine-based methods, and we discuss the reliability and other issues of AMAP-based GGO segmentation. Our research results demonstrate the acceptability and usefulness of AMAP-based GGO segmentation for assisting radiologists in detecting GGO in high-resolution CT diagnostic procedures." @default.
- W2078115938 created "2016-06-24" @default.
- W2078115938 creator A5040614393 @default.
- W2078115938 creator A5041569484 @default.
- W2078115938 creator A5054771531 @default.
- W2078115938 creator A5087850504 @default.
- W2078115938 creator A5090818171 @default.
- W2078115938 date "2011-11-17" @default.
- W2078115938 modified "2023-10-14" @default.
- W2078115938 title "Automatic Segmentation of Ground-Glass Opacities in Lung CT Images by Using Markov Random Field-Based Algorithms" @default.
- W2078115938 cites W1554739312 @default.
- W2078115938 cites W1969590389 @default.
- W2078115938 cites W1971076990 @default.
- W2078115938 cites W1974445091 @default.
- W2078115938 cites W1999732502 @default.
- W2078115938 cites W2020999234 @default.
- W2078115938 cites W2039400714 @default.
- W2078115938 cites W2056760934 @default.
- W2078115938 cites W2060266517 @default.
- W2078115938 cites W2085206647 @default.
- W2078115938 cites W2100860054 @default.
- W2078115938 cites W2119261592 @default.
- W2078115938 cites W2125148312 @default.
- W2078115938 cites W2138080168 @default.
- W2078115938 cites W2139745272 @default.
- W2078115938 cites W2143426320 @default.
- W2078115938 cites W2171793409 @default.
- W2078115938 cites W2317305062 @default.
- W2078115938 cites W2319352096 @default.
- W2078115938 cites W2326393045 @default.
- W2078115938 cites W3102998284 @default.
- W2078115938 doi "https://doi.org/10.1007/s10278-011-9435-5" @default.
- W2078115938 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3348983" @default.
- W2078115938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22089834" @default.
- W2078115938 hasPublicationYear "2011" @default.
- W2078115938 type Work @default.
- W2078115938 sameAs 2078115938 @default.
- W2078115938 citedByCount "26" @default.
- W2078115938 countsByYear W20781159382012 @default.
- W2078115938 countsByYear W20781159382014 @default.
- W2078115938 countsByYear W20781159382015 @default.
- W2078115938 countsByYear W20781159382016 @default.
- W2078115938 countsByYear W20781159382017 @default.
- W2078115938 countsByYear W20781159382018 @default.
- W2078115938 countsByYear W20781159382020 @default.
- W2078115938 countsByYear W20781159382021 @default.
- W2078115938 countsByYear W20781159382022 @default.
- W2078115938 countsByYear W20781159382023 @default.
- W2078115938 crossrefType "journal-article" @default.
- W2078115938 hasAuthorship W2078115938A5040614393 @default.
- W2078115938 hasAuthorship W2078115938A5041569484 @default.
- W2078115938 hasAuthorship W2078115938A5054771531 @default.
- W2078115938 hasAuthorship W2078115938A5087850504 @default.
- W2078115938 hasAuthorship W2078115938A5090818171 @default.
- W2078115938 hasBestOaLocation W20781159382 @default.
- W2078115938 hasConcept C11413529 @default.
- W2078115938 hasConcept C124504099 @default.
- W2078115938 hasConcept C126980161 @default.
- W2078115938 hasConcept C153180895 @default.
- W2078115938 hasConcept C154945302 @default.
- W2078115938 hasConcept C2778045648 @default.
- W2078115938 hasConcept C31972630 @default.
- W2078115938 hasConcept C41008148 @default.
- W2078115938 hasConcept C89600930 @default.
- W2078115938 hasConceptScore W2078115938C11413529 @default.
- W2078115938 hasConceptScore W2078115938C124504099 @default.
- W2078115938 hasConceptScore W2078115938C126980161 @default.
- W2078115938 hasConceptScore W2078115938C153180895 @default.
- W2078115938 hasConceptScore W2078115938C154945302 @default.
- W2078115938 hasConceptScore W2078115938C2778045648 @default.
- W2078115938 hasConceptScore W2078115938C31972630 @default.
- W2078115938 hasConceptScore W2078115938C41008148 @default.
- W2078115938 hasConceptScore W2078115938C89600930 @default.
- W2078115938 hasIssue "3" @default.
- W2078115938 hasLocation W20781159381 @default.
- W2078115938 hasLocation W20781159382 @default.
- W2078115938 hasLocation W20781159383 @default.
- W2078115938 hasLocation W20781159384 @default.
- W2078115938 hasOpenAccess W2078115938 @default.
- W2078115938 hasPrimaryLocation W20781159381 @default.
- W2078115938 hasRelatedWork W1522196789 @default.
- W2078115938 hasRelatedWork W1675950995 @default.
- W2078115938 hasRelatedWork W2004379491 @default.
- W2078115938 hasRelatedWork W2016045932 @default.
- W2078115938 hasRelatedWork W2025427163 @default.
- W2078115938 hasRelatedWork W2083140487 @default.
- W2078115938 hasRelatedWork W2113777112 @default.
- W2078115938 hasRelatedWork W2157431307 @default.
- W2078115938 hasRelatedWork W2188882668 @default.
- W2078115938 hasRelatedWork W2392013129 @default.
- W2078115938 hasVolume "25" @default.
- W2078115938 isParatext "false" @default.
- W2078115938 isRetracted "false" @default.
- W2078115938 magId "2078115938" @default.
- W2078115938 workType "article" @default.