Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078127574> ?p ?o ?g. }
- W2078127574 endingPage "1174" @default.
- W2078127574 startingPage "1165" @default.
- W2078127574 abstract "This paper considers the identification of Wiener–Hammerstein systems using Least-Squares Support Vector Machines based models. The power of fully black-box NARX-type models is evaluated and compared with models incorporating information about the structure of the systems. For the NARX models it is shown how to extend the kernel-based estimator to large data sets. For the structured model the emphasis is on preserving the convexity of the estimation problem through a suitable relaxation of the original problem. To develop an empirical understanding of the implications of the different model design choices, all considered models are compared on an artificial system under a number of different experimental conditions. The obtained results are then validated on the Wiener–Hammerstein benchmark data set and the final models are presented. It is illustrated that black-box models are a suitable technique for the identification of Wiener–Hammerstein systems. The incorporation of structural information results in significant improvements in modeling performance." @default.
- W2078127574 created "2016-06-24" @default.
- W2078127574 creator A5018814006 @default.
- W2078127574 creator A5032425845 @default.
- W2078127574 creator A5071796825 @default.
- W2078127574 creator A5074147384 @default.
- W2078127574 creator A5077710587 @default.
- W2078127574 creator A5078854904 @default.
- W2078127574 date "2012-11-01" @default.
- W2078127574 modified "2023-10-06" @default.
- W2078127574 title "Least-Squares Support Vector Machines for the identification of Wiener–Hammerstein systems" @default.
- W2078127574 cites W1598493736 @default.
- W2078127574 cites W1980759970 @default.
- W2078127574 cites W1981110740 @default.
- W2078127574 cites W1996538752 @default.
- W2078127574 cites W2001506129 @default.
- W2078127574 cites W2024029382 @default.
- W2078127574 cites W2029686441 @default.
- W2078127574 cites W2029896475 @default.
- W2078127574 cites W2032326935 @default.
- W2078127574 cites W2040135606 @default.
- W2078127574 cites W2046664056 @default.
- W2078127574 cites W2050810194 @default.
- W2078127574 cites W2062190049 @default.
- W2078127574 cites W2062560607 @default.
- W2078127574 cites W2076346323 @default.
- W2078127574 cites W2086248552 @default.
- W2078127574 cites W2096077954 @default.
- W2078127574 cites W2103452139 @default.
- W2078127574 cites W2109816097 @default.
- W2078127574 cites W2110044701 @default.
- W2078127574 cites W2120115609 @default.
- W2078127574 cites W2133380032 @default.
- W2078127574 cites W2146207066 @default.
- W2078127574 cites W2148957909 @default.
- W2078127574 cites W2152847093 @default.
- W2078127574 cites W2165580045 @default.
- W2078127574 cites W2166002295 @default.
- W2078127574 cites W4240172095 @default.
- W2078127574 doi "https://doi.org/10.1016/j.conengprac.2012.05.006" @default.
- W2078127574 hasPublicationYear "2012" @default.
- W2078127574 type Work @default.
- W2078127574 sameAs 2078127574 @default.
- W2078127574 citedByCount "49" @default.
- W2078127574 countsByYear W20781275742013 @default.
- W2078127574 countsByYear W20781275742014 @default.
- W2078127574 countsByYear W20781275742015 @default.
- W2078127574 countsByYear W20781275742016 @default.
- W2078127574 countsByYear W20781275742017 @default.
- W2078127574 countsByYear W20781275742018 @default.
- W2078127574 countsByYear W20781275742019 @default.
- W2078127574 countsByYear W20781275742020 @default.
- W2078127574 countsByYear W20781275742021 @default.
- W2078127574 countsByYear W20781275742022 @default.
- W2078127574 crossrefType "journal-article" @default.
- W2078127574 hasAuthorship W2078127574A5018814006 @default.
- W2078127574 hasAuthorship W2078127574A5032425845 @default.
- W2078127574 hasAuthorship W2078127574A5071796825 @default.
- W2078127574 hasAuthorship W2078127574A5074147384 @default.
- W2078127574 hasAuthorship W2078127574A5077710587 @default.
- W2078127574 hasAuthorship W2078127574A5078854904 @default.
- W2078127574 hasBestOaLocation W20781275742 @default.
- W2078127574 hasConcept C105795698 @default.
- W2078127574 hasConcept C106159729 @default.
- W2078127574 hasConcept C114614502 @default.
- W2078127574 hasConcept C116834253 @default.
- W2078127574 hasConcept C119247159 @default.
- W2078127574 hasConcept C12267149 @default.
- W2078127574 hasConcept C126255220 @default.
- W2078127574 hasConcept C13280743 @default.
- W2078127574 hasConcept C145828037 @default.
- W2078127574 hasConcept C154945302 @default.
- W2078127574 hasConcept C159877910 @default.
- W2078127574 hasConcept C162324750 @default.
- W2078127574 hasConcept C185429906 @default.
- W2078127574 hasConcept C185798385 @default.
- W2078127574 hasConcept C205649164 @default.
- W2078127574 hasConcept C33923547 @default.
- W2078127574 hasConcept C41008148 @default.
- W2078127574 hasConcept C42536954 @default.
- W2078127574 hasConcept C59822182 @default.
- W2078127574 hasConcept C67186912 @default.
- W2078127574 hasConcept C72134830 @default.
- W2078127574 hasConcept C74193536 @default.
- W2078127574 hasConcept C77088390 @default.
- W2078127574 hasConcept C86803240 @default.
- W2078127574 hasConcept C94966114 @default.
- W2078127574 hasConcept C9936470 @default.
- W2078127574 hasConceptScore W2078127574C105795698 @default.
- W2078127574 hasConceptScore W2078127574C106159729 @default.
- W2078127574 hasConceptScore W2078127574C114614502 @default.
- W2078127574 hasConceptScore W2078127574C116834253 @default.
- W2078127574 hasConceptScore W2078127574C119247159 @default.
- W2078127574 hasConceptScore W2078127574C12267149 @default.
- W2078127574 hasConceptScore W2078127574C126255220 @default.
- W2078127574 hasConceptScore W2078127574C13280743 @default.
- W2078127574 hasConceptScore W2078127574C145828037 @default.
- W2078127574 hasConceptScore W2078127574C154945302 @default.