Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078147151> ?p ?o ?g. }
- W2078147151 endingPage "156" @default.
- W2078147151 startingPage "144" @default.
- W2078147151 abstract "Complex real-world networks commonly reveal characteristic groups of nodes like communities and modules. These are of value in various applications, especially in the case of large social and information networks. However, while numerous community detection techniques have been presented in the literature, approaches for other groups of nodes are relatively rare and often limited in some way. We present a simple propagation-based algorithm for general group detection that requires no a priori knowledge and has near ideal complexity. The main novelty here is that different types of groups are revealed through an adequate hierarchical group refinement procedure. The proposed algorithm is validated on various synthetic and real-world networks, and rigorously compared against twelve other state-of-the-art approaches on group detection, hierarchy discovery and link prediction tasks. The algorithm is comparable to the state of the art in community detection, while superior in general group detection and link prediction. Based on the comparison, we also dis- cuss some prominent directions for future work on group detection in complex networks." @default.
- W2078147151 created "2016-06-24" @default.
- W2078147151 creator A5010062771 @default.
- W2078147151 creator A5084950606 @default.
- W2078147151 date "2014-03-01" @default.
- W2078147151 modified "2023-10-17" @default.
- W2078147151 title "Group detection in complex networks: An algorithm and comparison of the state of the art" @default.
- W2078147151 cites W1567329287 @default.
- W2078147151 cites W1568436970 @default.
- W2078147151 cites W1899594931 @default.
- W2078147151 cites W1969913143 @default.
- W2078147151 cites W1971421925 @default.
- W2078147151 cites W1976412347 @default.
- W2078147151 cites W1992028263 @default.
- W2078147151 cites W1994473607 @default.
- W2078147151 cites W1995996823 @default.
- W2078147151 cites W2008620264 @default.
- W2078147151 cites W2015953751 @default.
- W2078147151 cites W2017099446 @default.
- W2078147151 cites W2023655578 @default.
- W2078147151 cites W2033193852 @default.
- W2078147151 cites W2038920443 @default.
- W2078147151 cites W2043545458 @default.
- W2078147151 cites W2047940964 @default.
- W2078147151 cites W2048713010 @default.
- W2078147151 cites W2074192627 @default.
- W2078147151 cites W2082773934 @default.
- W2078147151 cites W2095293504 @default.
- W2078147151 cites W2099206369 @default.
- W2078147151 cites W2101580881 @default.
- W2078147151 cites W2108614537 @default.
- W2078147151 cites W2112090702 @default.
- W2078147151 cites W2117526408 @default.
- W2078147151 cites W2119998616 @default.
- W2078147151 cites W2127048411 @default.
- W2078147151 cites W2128366083 @default.
- W2078147151 cites W2131681506 @default.
- W2078147151 cites W2132202037 @default.
- W2078147151 cites W2136088806 @default.
- W2078147151 cites W2139818818 @default.
- W2078147151 cites W2141682941 @default.
- W2078147151 cites W2151936673 @default.
- W2078147151 cites W2155058903 @default.
- W2078147151 cites W2157825442 @default.
- W2078147151 cites W2161605580 @default.
- W2078147151 cites W2164928285 @default.
- W2078147151 cites W2164998314 @default.
- W2078147151 cites W2168346701 @default.
- W2078147151 cites W2169015768 @default.
- W2078147151 cites W2169499007 @default.
- W2078147151 cites W2913725584 @default.
- W2078147151 cites W3101630861 @default.
- W2078147151 cites W3103401544 @default.
- W2078147151 cites W3103786587 @default.
- W2078147151 cites W4235169531 @default.
- W2078147151 cites W4302087791 @default.
- W2078147151 cites W4312512934 @default.
- W2078147151 doi "https://doi.org/10.1016/j.physa.2013.12.003" @default.
- W2078147151 hasPublicationYear "2014" @default.
- W2078147151 type Work @default.
- W2078147151 sameAs 2078147151 @default.
- W2078147151 citedByCount "20" @default.
- W2078147151 countsByYear W20781471512014 @default.
- W2078147151 countsByYear W20781471512015 @default.
- W2078147151 countsByYear W20781471512016 @default.
- W2078147151 countsByYear W20781471512017 @default.
- W2078147151 countsByYear W20781471512018 @default.
- W2078147151 countsByYear W20781471512019 @default.
- W2078147151 countsByYear W20781471512020 @default.
- W2078147151 countsByYear W20781471512021 @default.
- W2078147151 crossrefType "journal-article" @default.
- W2078147151 hasAuthorship W2078147151A5010062771 @default.
- W2078147151 hasAuthorship W2078147151A5084950606 @default.
- W2078147151 hasBestOaLocation W20781471512 @default.
- W2078147151 hasConcept C111472728 @default.
- W2078147151 hasConcept C11413529 @default.
- W2078147151 hasConcept C124101348 @default.
- W2078147151 hasConcept C136764020 @default.
- W2078147151 hasConcept C138885662 @default.
- W2078147151 hasConcept C154945302 @default.
- W2078147151 hasConcept C162324750 @default.
- W2078147151 hasConcept C178790620 @default.
- W2078147151 hasConcept C185592680 @default.
- W2078147151 hasConcept C27206212 @default.
- W2078147151 hasConcept C2776639384 @default.
- W2078147151 hasConcept C2778738651 @default.
- W2078147151 hasConcept C2781311116 @default.
- W2078147151 hasConcept C31170391 @default.
- W2078147151 hasConcept C34447519 @default.
- W2078147151 hasConcept C34947359 @default.
- W2078147151 hasConcept C41008148 @default.
- W2078147151 hasConcept C48103436 @default.
- W2078147151 hasConcept C75553542 @default.
- W2078147151 hasConcept C80444323 @default.
- W2078147151 hasConceptScore W2078147151C111472728 @default.
- W2078147151 hasConceptScore W2078147151C11413529 @default.
- W2078147151 hasConceptScore W2078147151C124101348 @default.
- W2078147151 hasConceptScore W2078147151C136764020 @default.