Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078155237> ?p ?o ?g. }
- W2078155237 endingPage "2240" @default.
- W2078155237 startingPage "2227" @default.
- W2078155237 abstract "Differences in electrochemical characteristics among Li-ion batteries and factors such as temperature and ageing result in erroneous state-of-charge (SoC) estimation when using the existing extended Kalman filter (EKF) algorithm. This study presents an application of the Hamming neural network to the identification of suitable battery model parameters for improved SoC estimation. The discharging–charging voltage (DCV) patterns of ten fresh Li-ion batteries are measured, together with the battery parameters, as representative patterns. Through statistical analysis, the Hamming network is applied for identification of the representative DCV pattern that matches most closely of the pattern of the arbitrary battery to be measured. Model parameters of the representative battery are then applied to estimate the SoC of the arbitrary battery using the EKF. This avoids the need for repeated parameter measurement. Using model parameters selected by the proposed method, all SoC estimates (off-line and on-line) based on the EKF are within ±5% of the values estimated by ampere-hour counting." @default.
- W2078155237 created "2016-06-24" @default.
- W2078155237 creator A5033136149 @default.
- W2078155237 creator A5056989509 @default.
- W2078155237 creator A5063668003 @default.
- W2078155237 date "2011-02-01" @default.
- W2078155237 modified "2023-10-18" @default.
- W2078155237 title "Discrimination of Li-ion batteries based on Hamming network using discharging–charging voltage pattern recognition for improved state-of-charge estimation" @default.
- W2078155237 cites W1594672670 @default.
- W2078155237 cites W1596368917 @default.
- W2078155237 cites W1965266322 @default.
- W2078155237 cites W1968132117 @default.
- W2078155237 cites W1972158837 @default.
- W2078155237 cites W1972403221 @default.
- W2078155237 cites W1976543683 @default.
- W2078155237 cites W1979716586 @default.
- W2078155237 cites W1981832506 @default.
- W2078155237 cites W1987452676 @default.
- W2078155237 cites W1990488730 @default.
- W2078155237 cites W2002703437 @default.
- W2078155237 cites W2007864268 @default.
- W2078155237 cites W2009292868 @default.
- W2078155237 cites W2014557722 @default.
- W2078155237 cites W2019184474 @default.
- W2078155237 cites W2030428021 @default.
- W2078155237 cites W2031432443 @default.
- W2078155237 cites W2032001274 @default.
- W2078155237 cites W2038940317 @default.
- W2078155237 cites W2061485277 @default.
- W2078155237 cites W2066278538 @default.
- W2078155237 cites W2067295497 @default.
- W2078155237 cites W2068902472 @default.
- W2078155237 cites W2072817097 @default.
- W2078155237 cites W2077246475 @default.
- W2078155237 cites W2077937117 @default.
- W2078155237 cites W2084606228 @default.
- W2078155237 cites W2085993455 @default.
- W2078155237 cites W2090724149 @default.
- W2078155237 cites W2114234026 @default.
- W2078155237 cites W2131682036 @default.
- W2078155237 cites W2151534553 @default.
- W2078155237 cites W2153010323 @default.
- W2078155237 cites W2156968760 @default.
- W2078155237 cites W2158409082 @default.
- W2078155237 cites W2158701335 @default.
- W2078155237 cites W2161138491 @default.
- W2078155237 cites W2166618387 @default.
- W2078155237 cites W2170977282 @default.
- W2078155237 cites W2795893907 @default.
- W2078155237 doi "https://doi.org/10.1016/j.jpowsour.2010.08.119" @default.
- W2078155237 hasPublicationYear "2011" @default.
- W2078155237 type Work @default.
- W2078155237 sameAs 2078155237 @default.
- W2078155237 citedByCount "56" @default.
- W2078155237 countsByYear W20781552372012 @default.
- W2078155237 countsByYear W20781552372013 @default.
- W2078155237 countsByYear W20781552372014 @default.
- W2078155237 countsByYear W20781552372015 @default.
- W2078155237 countsByYear W20781552372016 @default.
- W2078155237 countsByYear W20781552372017 @default.
- W2078155237 countsByYear W20781552372018 @default.
- W2078155237 countsByYear W20781552372019 @default.
- W2078155237 countsByYear W20781552372020 @default.
- W2078155237 countsByYear W20781552372021 @default.
- W2078155237 countsByYear W20781552372022 @default.
- W2078155237 countsByYear W20781552372023 @default.
- W2078155237 crossrefType "journal-article" @default.
- W2078155237 hasAuthorship W2078155237A5033136149 @default.
- W2078155237 hasAuthorship W2078155237A5056989509 @default.
- W2078155237 hasAuthorship W2078155237A5063668003 @default.
- W2078155237 hasConcept C11413529 @default.
- W2078155237 hasConcept C119599485 @default.
- W2078155237 hasConcept C121332964 @default.
- W2078155237 hasConcept C127413603 @default.
- W2078155237 hasConcept C154945302 @default.
- W2078155237 hasConcept C157286648 @default.
- W2078155237 hasConcept C163258240 @default.
- W2078155237 hasConcept C165801399 @default.
- W2078155237 hasConcept C193319292 @default.
- W2078155237 hasConcept C206833254 @default.
- W2078155237 hasConcept C2775924081 @default.
- W2078155237 hasConcept C2776582896 @default.
- W2078155237 hasConcept C41008148 @default.
- W2078155237 hasConcept C47446073 @default.
- W2078155237 hasConcept C555008776 @default.
- W2078155237 hasConcept C62520636 @default.
- W2078155237 hasConceptScore W2078155237C11413529 @default.
- W2078155237 hasConceptScore W2078155237C119599485 @default.
- W2078155237 hasConceptScore W2078155237C121332964 @default.
- W2078155237 hasConceptScore W2078155237C127413603 @default.
- W2078155237 hasConceptScore W2078155237C154945302 @default.
- W2078155237 hasConceptScore W2078155237C157286648 @default.
- W2078155237 hasConceptScore W2078155237C163258240 @default.
- W2078155237 hasConceptScore W2078155237C165801399 @default.
- W2078155237 hasConceptScore W2078155237C193319292 @default.
- W2078155237 hasConceptScore W2078155237C206833254 @default.
- W2078155237 hasConceptScore W2078155237C2775924081 @default.
- W2078155237 hasConceptScore W2078155237C2776582896 @default.