Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078157631> ?p ?o ?g. }
- W2078157631 abstract "With the advent of the era of “Big Data”, the application of the large-scale data is becoming popular. Efficiently using and analyzing the data has become an important problem. Traditional knowledge reduction algorithm read small data samples once into the computer main memory for reduction, but it is not suitable for large-scale data. This paper takes the large-scale sensor monitoring dynamic data as the research object and puts forward an incremental reduction algorithm based on Map-Reduce. Using Hash fast partitioning strategy this algorithm divides the initial data set into multiple subdatasets to compute which has greatly reduced the calculation time and space complexity of each node. Finally,through some experiments on the data sets in UCI machine learning repository based on Hadoop platform,the algorithm is proved more efficient and suitable for large-scale dynamic data. Compared to the traditional algorithm, the highest speedup of the parallel algorithm can be increased up to 1.55 times." @default.
- W2078157631 created "2016-06-24" @default.
- W2078157631 creator A5038560939 @default.
- W2078157631 creator A5058965019 @default.
- W2078157631 creator A5062853168 @default.
- W2078157631 creator A5078357223 @default.
- W2078157631 date "2014-04-01" @default.
- W2078157631 modified "2023-09-22" @default.
- W2078157631 title "The Large-scale Dynamic Data Rapid Reduction Algorithm Based on Map-Reduce" @default.
- W2078157631 cites W1525890289 @default.
- W2078157631 cites W1553701556 @default.
- W2078157631 cites W1798724659 @default.
- W2078157631 cites W1980032919 @default.
- W2078157631 cites W1997299288 @default.
- W2078157631 cites W2053439727 @default.
- W2078157631 cites W2086876270 @default.
- W2078157631 cites W2089137303 @default.
- W2078157631 cites W2089757203 @default.
- W2078157631 cites W2089860066 @default.
- W2078157631 cites W2349417923 @default.
- W2078157631 cites W2354699096 @default.
- W2078157631 cites W2355158739 @default.
- W2078157631 cites W2360992027 @default.
- W2078157631 cites W2365382545 @default.
- W2078157631 cites W2367837550 @default.
- W2078157631 cites W2369788407 @default.
- W2078157631 cites W2369793023 @default.
- W2078157631 cites W2370103950 @default.
- W2078157631 cites W2384834483 @default.
- W2078157631 cites W2389448774 @default.
- W2078157631 cites W2390424330 @default.
- W2078157631 cites W2391525761 @default.
- W2078157631 doi "https://doi.org/10.4304/jsw.9.4.1028-1035" @default.
- W2078157631 hasPublicationYear "2014" @default.
- W2078157631 type Work @default.
- W2078157631 sameAs 2078157631 @default.
- W2078157631 citedByCount "0" @default.
- W2078157631 crossrefType "journal-article" @default.
- W2078157631 hasAuthorship W2078157631A5038560939 @default.
- W2078157631 hasAuthorship W2078157631A5058965019 @default.
- W2078157631 hasAuthorship W2078157631A5062853168 @default.
- W2078157631 hasAuthorship W2078157631A5078357223 @default.
- W2078157631 hasConcept C111335779 @default.
- W2078157631 hasConcept C11413529 @default.
- W2078157631 hasConcept C121332964 @default.
- W2078157631 hasConcept C124101348 @default.
- W2078157631 hasConcept C127413603 @default.
- W2078157631 hasConcept C153914771 @default.
- W2078157631 hasConcept C154945302 @default.
- W2078157631 hasConcept C173608175 @default.
- W2078157631 hasConcept C177264268 @default.
- W2078157631 hasConcept C197298091 @default.
- W2078157631 hasConcept C199360897 @default.
- W2078157631 hasConcept C2524010 @default.
- W2078157631 hasConcept C2778755073 @default.
- W2078157631 hasConcept C3019257732 @default.
- W2078157631 hasConcept C33923547 @default.
- W2078157631 hasConcept C38652104 @default.
- W2078157631 hasConcept C41008148 @default.
- W2078157631 hasConcept C58489278 @default.
- W2078157631 hasConcept C62520636 @default.
- W2078157631 hasConcept C62611344 @default.
- W2078157631 hasConcept C66938386 @default.
- W2078157631 hasConcept C68339613 @default.
- W2078157631 hasConcept C75684735 @default.
- W2078157631 hasConcept C77088390 @default.
- W2078157631 hasConcept C99138194 @default.
- W2078157631 hasConceptScore W2078157631C111335779 @default.
- W2078157631 hasConceptScore W2078157631C11413529 @default.
- W2078157631 hasConceptScore W2078157631C121332964 @default.
- W2078157631 hasConceptScore W2078157631C124101348 @default.
- W2078157631 hasConceptScore W2078157631C127413603 @default.
- W2078157631 hasConceptScore W2078157631C153914771 @default.
- W2078157631 hasConceptScore W2078157631C154945302 @default.
- W2078157631 hasConceptScore W2078157631C173608175 @default.
- W2078157631 hasConceptScore W2078157631C177264268 @default.
- W2078157631 hasConceptScore W2078157631C197298091 @default.
- W2078157631 hasConceptScore W2078157631C199360897 @default.
- W2078157631 hasConceptScore W2078157631C2524010 @default.
- W2078157631 hasConceptScore W2078157631C2778755073 @default.
- W2078157631 hasConceptScore W2078157631C3019257732 @default.
- W2078157631 hasConceptScore W2078157631C33923547 @default.
- W2078157631 hasConceptScore W2078157631C38652104 @default.
- W2078157631 hasConceptScore W2078157631C41008148 @default.
- W2078157631 hasConceptScore W2078157631C58489278 @default.
- W2078157631 hasConceptScore W2078157631C62520636 @default.
- W2078157631 hasConceptScore W2078157631C62611344 @default.
- W2078157631 hasConceptScore W2078157631C66938386 @default.
- W2078157631 hasConceptScore W2078157631C68339613 @default.
- W2078157631 hasConceptScore W2078157631C75684735 @default.
- W2078157631 hasConceptScore W2078157631C77088390 @default.
- W2078157631 hasConceptScore W2078157631C99138194 @default.
- W2078157631 hasLocation W20781576311 @default.
- W2078157631 hasOpenAccess W2078157631 @default.
- W2078157631 hasPrimaryLocation W20781576311 @default.
- W2078157631 hasRelatedWork W1553967092 @default.
- W2078157631 hasRelatedWork W1865679621 @default.
- W2078157631 hasRelatedWork W1973241710 @default.
- W2078157631 hasRelatedWork W2037823898 @default.
- W2078157631 hasRelatedWork W2056896847 @default.