Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078167303> ?p ?o ?g. }
- W2078167303 abstract "Abstract Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R 2 = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus . Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus . As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts Candida albicans and Cryptococcus neoformans indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike C. albicans and C. neoformans , the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in A. fumigatus and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the A. fumigatus hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence." @default.
- W2078167303 created "2016-06-24" @default.
- W2078167303 creator A5029380534 @default.
- W2078167303 creator A5042007051 @default.
- W2078167303 creator A5043106554 @default.
- W2078167303 creator A5069344369 @default.
- W2078167303 creator A5071982932 @default.
- W2078167303 creator A5074572683 @default.
- W2078167303 date "2012-02-06" @default.
- W2078167303 modified "2023-10-09" @default.
- W2078167303 title "Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter" @default.
- W2078167303 cites W1506412210 @default.
- W2078167303 cites W1593902977 @default.
- W2078167303 cites W1759539608 @default.
- W2078167303 cites W1913356548 @default.
- W2078167303 cites W1953566431 @default.
- W2078167303 cites W1973084729 @default.
- W2078167303 cites W1975390013 @default.
- W2078167303 cites W1975872361 @default.
- W2078167303 cites W1978482918 @default.
- W2078167303 cites W1981093360 @default.
- W2078167303 cites W1983033220 @default.
- W2078167303 cites W1985692664 @default.
- W2078167303 cites W1986207589 @default.
- W2078167303 cites W1989914583 @default.
- W2078167303 cites W1990105826 @default.
- W2078167303 cites W1993236131 @default.
- W2078167303 cites W1994854020 @default.
- W2078167303 cites W1997487743 @default.
- W2078167303 cites W2000282782 @default.
- W2078167303 cites W2001981352 @default.
- W2078167303 cites W2002605431 @default.
- W2078167303 cites W2004417949 @default.
- W2078167303 cites W2006560356 @default.
- W2078167303 cites W2009189592 @default.
- W2078167303 cites W2009778778 @default.
- W2078167303 cites W2012035078 @default.
- W2078167303 cites W2017186637 @default.
- W2078167303 cites W2029644847 @default.
- W2078167303 cites W2033840976 @default.
- W2078167303 cites W2037846837 @default.
- W2078167303 cites W2040613244 @default.
- W2078167303 cites W2040687454 @default.
- W2078167303 cites W2043095804 @default.
- W2078167303 cites W2044127733 @default.
- W2078167303 cites W2050544107 @default.
- W2078167303 cites W2051088765 @default.
- W2078167303 cites W2053359084 @default.
- W2078167303 cites W2053403241 @default.
- W2078167303 cites W2055910171 @default.
- W2078167303 cites W2061338233 @default.
- W2078167303 cites W2064092117 @default.
- W2078167303 cites W2074972577 @default.
- W2078167303 cites W2075891899 @default.
- W2078167303 cites W2078594804 @default.
- W2078167303 cites W2083385012 @default.
- W2078167303 cites W2086538611 @default.
- W2078167303 cites W2095355118 @default.
- W2078167303 cites W2099205275 @default.
- W2078167303 cites W2100167673 @default.
- W2078167303 cites W2100237791 @default.
- W2078167303 cites W2103773924 @default.
- W2078167303 cites W2104657811 @default.
- W2078167303 cites W2104724785 @default.
- W2078167303 cites W2105317955 @default.
- W2078167303 cites W2105527814 @default.
- W2078167303 cites W2107277218 @default.
- W2078167303 cites W2109440294 @default.
- W2078167303 cites W2110939472 @default.
- W2078167303 cites W2116502117 @default.
- W2078167303 cites W2116798591 @default.
- W2078167303 cites W2120725174 @default.
- W2078167303 cites W2124551605 @default.
- W2078167303 cites W2126268158 @default.
- W2078167303 cites W2130590948 @default.
- W2078167303 cites W2132546222 @default.
- W2078167303 cites W2135840745 @default.
- W2078167303 cites W2135920982 @default.
- W2078167303 cites W2135949063 @default.
- W2078167303 cites W2137540340 @default.
- W2078167303 cites W2138907159 @default.
- W2078167303 cites W2149472502 @default.
- W2078167303 cites W2150967559 @default.
- W2078167303 cites W2153562609 @default.
- W2078167303 cites W2154868023 @default.
- W2078167303 cites W2156679838 @default.
- W2078167303 cites W2158217645 @default.
- W2078167303 cites W2158645874 @default.
- W2078167303 cites W2164062808 @default.
- W2078167303 cites W2167785685 @default.
- W2078167303 cites W2167925521 @default.
- W2078167303 cites W2168812832 @default.
- W2078167303 cites W2169219994 @default.
- W2078167303 cites W4237222446 @default.
- W2078167303 cites W4293247451 @default.
- W2078167303 doi "https://doi.org/10.1186/1471-2164-13-62" @default.
- W2078167303 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3293747" @default.
- W2078167303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22309491" @default.
- W2078167303 hasPublicationYear "2012" @default.
- W2078167303 type Work @default.