Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078169067> ?p ?o ?g. }
- W2078169067 endingPage "869" @default.
- W2078169067 startingPage "851" @default.
- W2078169067 abstract "In order to describe the connection from an event of MJO to the next in the boreal winter, the eastward propagation of MJO is studied, focusing on that over the western hemisphere. Propagation signal is identified by EEOF analysis, performed on the bandpass filtered OLR for the period of 1979-2000. Besides NOAA OLR, total precipitable water (TPW), and surface winds from Special Sensor Microwave/ Imager (SSM/I), precipitation observed from Microwave Sounding Unit (MSU), and reanalysis and operational analysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF), are utilized for the composite. Positive TPW anomalies are found, synchronizing with tropospheric and surface zonal wind anomalies. They propagate eastward all around the equator in the boreal winter. They propagate at a speed of about 6 ms-1, with a Kelvin-Rossby coupled mode structure in the eastern hemisphere, and at about 20 ms-1 as an envelope of a radiating response in the western hemisphere. Within the envelope in the western hemisphere, faster propagating signals corresponding to 30-40 ms-1 exist in the fields of TPW, zonal wind at 200 and 700 hPa, surface zonal wind. It is especially clear in the geopotential anomalies at 1000 hPa. This fast propagation speed of 30-40 ms-1 is consistent with a first-baroclinic dry Kelvin wave mode recently rediscovered by Milliff and Madden (1996), and Bantzer and Wallace (1996). TPW increases under surface easterly anomalies along the equator. After the preceding TPW accumulation for 5-7.5 days, convective anomalies begin to occur as a part of the next cycle of the MJO from the eastern Atlantic to the western Indian Ocean. These results suggest a following conceptual model for propagations and event-to-event connections of MJO. Equatorial Kelvin wave generated by convection of the MJO propagates eastward emanating from a warm pool region at a faster speed (30-40 ms-1) in the western hemisphere. Elevated topography of the South American and African continent, blocks the wave propagation. After being blocked several days by topography, they continue to proceed. As a result, the signal propagates at 20 ms-1 on average. Frictional convergence with lower easterlies of the dry Kelvin wave results in the associated propagation of TPW positive anomaly. Although it does not induce deep convections over large-scale subsidence regions, once it enters over the warm water in the western Indian Ocean, it helps to induce active convections for the next cycle of MJO." @default.
- W2078169067 created "2016-06-24" @default.
- W2078169067 creator A5007043824 @default.
- W2078169067 creator A5059431484 @default.
- W2078169067 date "2003-01-01" @default.
- W2078169067 modified "2023-10-05" @default.
- W2078169067 title "Equatorial Circumnavigation of Moisture Signal Associated with the Madden-Julian Oscillation (MJO) during Boreal Winter" @default.
- W2078169067 cites W120571839 @default.
- W2078169067 cites W1964490911 @default.
- W2078169067 cites W1966058116 @default.
- W2078169067 cites W1967429906 @default.
- W2078169067 cites W1986242393 @default.
- W2078169067 cites W1988498050 @default.
- W2078169067 cites W1992574773 @default.
- W2078169067 cites W1993231420 @default.
- W2078169067 cites W1994970007 @default.
- W2078169067 cites W2000081768 @default.
- W2078169067 cites W2002762140 @default.
- W2078169067 cites W2007492295 @default.
- W2078169067 cites W2012731639 @default.
- W2078169067 cites W2018485705 @default.
- W2078169067 cites W2019067654 @default.
- W2078169067 cites W2032380712 @default.
- W2078169067 cites W2035677848 @default.
- W2078169067 cites W2037300215 @default.
- W2078169067 cites W2044060160 @default.
- W2078169067 cites W2045900372 @default.
- W2078169067 cites W2065577600 @default.
- W2078169067 cites W2079340576 @default.
- W2078169067 cites W2151895407 @default.
- W2078169067 cites W2154671571 @default.
- W2078169067 cites W2165952787 @default.
- W2078169067 cites W2171864321 @default.
- W2078169067 cites W2173094333 @default.
- W2078169067 cites W2175808424 @default.
- W2078169067 cites W2176564346 @default.
- W2078169067 cites W2176645098 @default.
- W2078169067 cites W2178340819 @default.
- W2078169067 cites W4233614492 @default.
- W2078169067 cites W4247346598 @default.
- W2078169067 doi "https://doi.org/10.2151/jmsj.81.851" @default.
- W2078169067 hasPublicationYear "2003" @default.
- W2078169067 type Work @default.
- W2078169067 sameAs 2078169067 @default.
- W2078169067 citedByCount "42" @default.
- W2078169067 countsByYear W20781690672012 @default.
- W2078169067 countsByYear W20781690672013 @default.
- W2078169067 countsByYear W20781690672014 @default.
- W2078169067 countsByYear W20781690672015 @default.
- W2078169067 countsByYear W20781690672016 @default.
- W2078169067 countsByYear W20781690672017 @default.
- W2078169067 countsByYear W20781690672018 @default.
- W2078169067 countsByYear W20781690672019 @default.
- W2078169067 countsByYear W20781690672020 @default.
- W2078169067 countsByYear W20781690672021 @default.
- W2078169067 countsByYear W20781690672022 @default.
- W2078169067 countsByYear W20781690672023 @default.
- W2078169067 crossrefType "journal-article" @default.
- W2078169067 hasAuthorship W2078169067A5007043824 @default.
- W2078169067 hasAuthorship W2078169067A5059431484 @default.
- W2078169067 hasBestOaLocation W20781690671 @default.
- W2078169067 hasConcept C100537666 @default.
- W2078169067 hasConcept C10899652 @default.
- W2078169067 hasConcept C117381296 @default.
- W2078169067 hasConcept C127313418 @default.
- W2078169067 hasConcept C151730666 @default.
- W2078169067 hasConcept C153294291 @default.
- W2078169067 hasConcept C205649164 @default.
- W2078169067 hasConcept C2778439541 @default.
- W2078169067 hasConcept C39432304 @default.
- W2078169067 hasConcept C49204034 @default.
- W2078169067 hasConcept C54355233 @default.
- W2078169067 hasConcept C86803240 @default.
- W2078169067 hasConcept C91586092 @default.
- W2078169067 hasConceptScore W2078169067C100537666 @default.
- W2078169067 hasConceptScore W2078169067C10899652 @default.
- W2078169067 hasConceptScore W2078169067C117381296 @default.
- W2078169067 hasConceptScore W2078169067C127313418 @default.
- W2078169067 hasConceptScore W2078169067C151730666 @default.
- W2078169067 hasConceptScore W2078169067C153294291 @default.
- W2078169067 hasConceptScore W2078169067C205649164 @default.
- W2078169067 hasConceptScore W2078169067C2778439541 @default.
- W2078169067 hasConceptScore W2078169067C39432304 @default.
- W2078169067 hasConceptScore W2078169067C49204034 @default.
- W2078169067 hasConceptScore W2078169067C54355233 @default.
- W2078169067 hasConceptScore W2078169067C86803240 @default.
- W2078169067 hasConceptScore W2078169067C91586092 @default.
- W2078169067 hasIssue "4" @default.
- W2078169067 hasLocation W20781690671 @default.
- W2078169067 hasOpenAccess W2078169067 @default.
- W2078169067 hasPrimaryLocation W20781690671 @default.
- W2078169067 hasRelatedWork W1857132413 @default.
- W2078169067 hasRelatedWork W2002471178 @default.
- W2078169067 hasRelatedWork W2072024512 @default.
- W2078169067 hasRelatedWork W2587529561 @default.
- W2078169067 hasRelatedWork W2994371200 @default.
- W2078169067 hasRelatedWork W3153178013 @default.
- W2078169067 hasRelatedWork W4226132988 @default.