Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078173640> ?p ?o ?g. }
- W2078173640 endingPage "3077" @default.
- W2078173640 startingPage "3054" @default.
- W2078173640 abstract "Abstract Neighborhood and object-based probabilistic precipitation forecasts from a convection-allowing ensemble are verified and calibrated. Calibration methods include logistic regression, one- and two-parameter reliability-based calibration, and cumulative distribution function (CDF)-based bias adjustment. Newly proposed object-based probabilistic forecasts for the occurrence of a forecast object are derived from the percentage of ensemble members with a matching object. Verification and calibration of single- and multimodel subensembles are performed to explore the effect of using multiple models. The uncalibrated neighborhood-based probabilistic forecasts have skill minima during the afternoon convective maximum. Calibration generally improves the skill, especially during the skill minima, resulting in positive skill. In general all calibration methods perform similarly, with a slight advantage of logistic regression (one-parameter reliability based) calibration for 1-h (6 h) accumulations. The uncalibrated object-based probabilistic forecasts are, in general, less skillful than the uncalibrated neighborhood-based probabilistic forecasts. Object-based calibration also results in positive skill at all lead times. For object-based calibration the skill is significantly different among the calibration methods, with the logistic regression performing the best and CDF-based bias adjustment performing the worst. For both the neighborhood and object-based probabilistic forecasts, the impact of using 10 or 25 days of training data for calibration is generally small and is most significant for the two-parameter reliability-based method. An uncalibrated Advanced Research Weather Research and Forecasting Model (ARW-WRF) subensemble is significantly more skillful than an uncalibrated WRF Nonhydrostatic Mesoscale Model (NMM) subensemble. The difference is reduced by calibration. The multimodel subensemble only shows an advantage for the neighborhood-based forecasts beyond 1-day lead time and shows no advantage for the object-based forecasts." @default.
- W2078173640 created "2016-06-24" @default.
- W2078173640 creator A5029367785 @default.
- W2078173640 creator A5086479704 @default.
- W2078173640 date "2012-09-01" @default.
- W2078173640 modified "2023-09-27" @default.
- W2078173640 title "Verification and Calibration of Neighborhood and Object-Based Probabilistic Precipitation Forecasts from a Multimodel Convection-Allowing Ensemble" @default.
- W2078173640 cites W1526661693 @default.
- W2078173640 cites W1964161989 @default.
- W2078173640 cites W1968650930 @default.
- W2078173640 cites W1970027288 @default.
- W2078173640 cites W1974290788 @default.
- W2078173640 cites W1975235878 @default.
- W2078173640 cites W1976255336 @default.
- W2078173640 cites W1976703536 @default.
- W2078173640 cites W1979896728 @default.
- W2078173640 cites W1986260542 @default.
- W2078173640 cites W1986998320 @default.
- W2078173640 cites W1987238719 @default.
- W2078173640 cites W1998605857 @default.
- W2078173640 cites W2002262909 @default.
- W2078173640 cites W2002378211 @default.
- W2078173640 cites W2002926241 @default.
- W2078173640 cites W2012910700 @default.
- W2078173640 cites W2013765062 @default.
- W2078173640 cites W2015559976 @default.
- W2078173640 cites W2015986688 @default.
- W2078173640 cites W2018772114 @default.
- W2078173640 cites W2026961900 @default.
- W2078173640 cites W2028841012 @default.
- W2078173640 cites W2031493360 @default.
- W2078173640 cites W2032435355 @default.
- W2078173640 cites W2033486251 @default.
- W2078173640 cites W2037327690 @default.
- W2078173640 cites W2037429221 @default.
- W2078173640 cites W2038707259 @default.
- W2078173640 cites W2047634553 @default.
- W2078173640 cites W2048972150 @default.
- W2078173640 cites W2052201417 @default.
- W2078173640 cites W2069821006 @default.
- W2078173640 cites W2073241381 @default.
- W2078173640 cites W2078690500 @default.
- W2078173640 cites W2087986372 @default.
- W2078173640 cites W2095845042 @default.
- W2078173640 cites W2096533374 @default.
- W2078173640 cites W2097675165 @default.
- W2078173640 cites W2097804995 @default.
- W2078173640 cites W2098363247 @default.
- W2078173640 cites W2098813512 @default.
- W2078173640 cites W2101225175 @default.
- W2078173640 cites W2103402658 @default.
- W2078173640 cites W2103680334 @default.
- W2078173640 cites W2106542083 @default.
- W2078173640 cites W2107312432 @default.
- W2078173640 cites W2110668259 @default.
- W2078173640 cites W2113700178 @default.
- W2078173640 cites W2119220952 @default.
- W2078173640 cites W2121385267 @default.
- W2078173640 cites W2128225313 @default.
- W2078173640 cites W2128469217 @default.
- W2078173640 cites W2137527689 @default.
- W2078173640 cites W2137639805 @default.
- W2078173640 cites W2141093045 @default.
- W2078173640 cites W2144282700 @default.
- W2078173640 cites W2145864490 @default.
- W2078173640 cites W2151695040 @default.
- W2078173640 cites W2158840489 @default.
- W2078173640 cites W2160811279 @default.
- W2078173640 cites W2163145639 @default.
- W2078173640 cites W2164939187 @default.
- W2078173640 cites W2166120424 @default.
- W2078173640 cites W2170766202 @default.
- W2078173640 cites W2170957301 @default.
- W2078173640 cites W2172654556 @default.
- W2078173640 cites W2173120463 @default.
- W2078173640 cites W2174289333 @default.
- W2078173640 cites W2174805489 @default.
- W2078173640 cites W2175636903 @default.
- W2078173640 cites W2176194411 @default.
- W2078173640 cites W2177082044 @default.
- W2078173640 cites W2178057317 @default.
- W2078173640 cites W2179912439 @default.
- W2078173640 cites W2180247982 @default.
- W2078173640 cites W2180267979 @default.
- W2078173640 cites W3172054987 @default.
- W2078173640 cites W4211177544 @default.
- W2078173640 cites W4230839549 @default.
- W2078173640 doi "https://doi.org/10.1175/mwr-d-11-00356.1" @default.
- W2078173640 hasPublicationYear "2012" @default.
- W2078173640 type Work @default.
- W2078173640 sameAs 2078173640 @default.
- W2078173640 citedByCount "53" @default.
- W2078173640 countsByYear W20781736402012 @default.
- W2078173640 countsByYear W20781736402013 @default.
- W2078173640 countsByYear W20781736402014 @default.
- W2078173640 countsByYear W20781736402015 @default.
- W2078173640 countsByYear W20781736402016 @default.
- W2078173640 countsByYear W20781736402017 @default.