Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078175064> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2078175064 endingPage "1030" @default.
- W2078175064 startingPage "1021" @default.
- W2078175064 abstract "Computation of the stress intensity factors (SIFs) at the crack tip is the basis for pavement crack propagation analysis. Due to the three-dimensional (3-D) nature of cracked pavements and traffic loading, two-dimensional (2-D) finite element analysis (FEA) may be too simple to precisely predict SIFs, and the best choice for calculating the SIFs seems to be 3-D FEA programs. However, the 3-D FEA solutions are often computationally heavy. We had previously developed a semi-analytical FEA with multi-variable regression approach to fill this gap, but its accuracy still needs to be improved. To address this problem, a neural network approach based on semi-analytical FEA is presented in this paper: firstly, a SIFs database was generated through analyzing varieties of pavement structures using elastic semi-analytical FEA program; secondly, from the results in the database, neural network (NN) based SIF equations were developed for practical applications. The determination coefficients (R2) of all the developed NN models were greater than 0.99 and mean square error (MSE) values were less than 1e−4. The comparisons between the prediction results from NN models and multivariable regression models also showed the advantage of NN over multivariable regression on the prediction accuracy. This proposed NN SA-FEA SIF prediction approach has been developed as a pavement crack propagation analysis tool." @default.
- W2078175064 created "2016-06-24" @default.
- W2078175064 creator A5061061811 @default.
- W2078175064 creator A5067364716 @default.
- W2078175064 creator A5070324543 @default.
- W2078175064 date "2014-03-01" @default.
- W2078175064 modified "2023-10-18" @default.
- W2078175064 title "Prediction of stress intensity factors in pavement cracking with neural networks based on semi-analytical FEA" @default.
- W2078175064 cites W1983172055 @default.
- W2078175064 cites W1998328603 @default.
- W2078175064 cites W2012788628 @default.
- W2078175064 cites W2014589603 @default.
- W2078175064 cites W2038522010 @default.
- W2078175064 cites W2042622792 @default.
- W2078175064 cites W2049709187 @default.
- W2078175064 cites W2084985969 @default.
- W2078175064 cites W2109563136 @default.
- W2078175064 cites W2111102403 @default.
- W2078175064 doi "https://doi.org/10.1016/j.eswa.2013.07.063" @default.
- W2078175064 hasPublicationYear "2014" @default.
- W2078175064 type Work @default.
- W2078175064 sameAs 2078175064 @default.
- W2078175064 citedByCount "26" @default.
- W2078175064 countsByYear W20781750642014 @default.
- W2078175064 countsByYear W20781750642015 @default.
- W2078175064 countsByYear W20781750642016 @default.
- W2078175064 countsByYear W20781750642017 @default.
- W2078175064 countsByYear W20781750642018 @default.
- W2078175064 countsByYear W20781750642019 @default.
- W2078175064 countsByYear W20781750642020 @default.
- W2078175064 countsByYear W20781750642021 @default.
- W2078175064 countsByYear W20781750642022 @default.
- W2078175064 countsByYear W20781750642023 @default.
- W2078175064 crossrefType "journal-article" @default.
- W2078175064 hasAuthorship W2078175064A5061061811 @default.
- W2078175064 hasAuthorship W2078175064A5067364716 @default.
- W2078175064 hasAuthorship W2078175064A5070324543 @default.
- W2078175064 hasConcept C105795698 @default.
- W2078175064 hasConcept C11413529 @default.
- W2078175064 hasConcept C117312493 @default.
- W2078175064 hasConcept C119857082 @default.
- W2078175064 hasConcept C127413603 @default.
- W2078175064 hasConcept C133731056 @default.
- W2078175064 hasConcept C135628077 @default.
- W2078175064 hasConcept C138885662 @default.
- W2078175064 hasConcept C152877465 @default.
- W2078175064 hasConcept C21036866 @default.
- W2078175064 hasConcept C33923547 @default.
- W2078175064 hasConcept C41008148 @default.
- W2078175064 hasConcept C41895202 @default.
- W2078175064 hasConcept C45374587 @default.
- W2078175064 hasConcept C48921125 @default.
- W2078175064 hasConcept C50644808 @default.
- W2078175064 hasConcept C54303661 @default.
- W2078175064 hasConcept C59085676 @default.
- W2078175064 hasConcept C66938386 @default.
- W2078175064 hasConcept C83546350 @default.
- W2078175064 hasConceptScore W2078175064C105795698 @default.
- W2078175064 hasConceptScore W2078175064C11413529 @default.
- W2078175064 hasConceptScore W2078175064C117312493 @default.
- W2078175064 hasConceptScore W2078175064C119857082 @default.
- W2078175064 hasConceptScore W2078175064C127413603 @default.
- W2078175064 hasConceptScore W2078175064C133731056 @default.
- W2078175064 hasConceptScore W2078175064C135628077 @default.
- W2078175064 hasConceptScore W2078175064C138885662 @default.
- W2078175064 hasConceptScore W2078175064C152877465 @default.
- W2078175064 hasConceptScore W2078175064C21036866 @default.
- W2078175064 hasConceptScore W2078175064C33923547 @default.
- W2078175064 hasConceptScore W2078175064C41008148 @default.
- W2078175064 hasConceptScore W2078175064C41895202 @default.
- W2078175064 hasConceptScore W2078175064C45374587 @default.
- W2078175064 hasConceptScore W2078175064C48921125 @default.
- W2078175064 hasConceptScore W2078175064C50644808 @default.
- W2078175064 hasConceptScore W2078175064C54303661 @default.
- W2078175064 hasConceptScore W2078175064C59085676 @default.
- W2078175064 hasConceptScore W2078175064C66938386 @default.
- W2078175064 hasConceptScore W2078175064C83546350 @default.
- W2078175064 hasIssue "4" @default.
- W2078175064 hasLocation W20781750641 @default.
- W2078175064 hasOpenAccess W2078175064 @default.
- W2078175064 hasPrimaryLocation W20781750641 @default.
- W2078175064 hasRelatedWork W1970158984 @default.
- W2078175064 hasRelatedWork W2049327155 @default.
- W2078175064 hasRelatedWork W2075210509 @default.
- W2078175064 hasRelatedWork W2185513829 @default.
- W2078175064 hasRelatedWork W2315418616 @default.
- W2078175064 hasRelatedWork W2357282952 @default.
- W2078175064 hasRelatedWork W2358373192 @default.
- W2078175064 hasRelatedWork W2920642659 @default.
- W2078175064 hasRelatedWork W2977922362 @default.
- W2078175064 hasRelatedWork W3087320425 @default.
- W2078175064 hasVolume "41" @default.
- W2078175064 isParatext "false" @default.
- W2078175064 isRetracted "false" @default.
- W2078175064 magId "2078175064" @default.
- W2078175064 workType "article" @default.