Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078177627> ?p ?o ?g. }
- W2078177627 endingPage "185" @default.
- W2078177627 startingPage "182" @default.
- W2078177627 abstract "Putting solids under pressure reduces the distances between their atoms, and at extremely high pressures, as electron density increases, all materials approach an ideal metal. Under pressure, then, 'simple' metals such as lithium and sodium might be expected to become increasingly better conductors. But about 10 years ago, calculations suggested that neither element responds in such a straightforward manner. Instead, it was predicted that the alkali atoms would form pairs under pressure and yield more complex structures with insulating properties. Two groups in this issue present experimental confirmation that this is the case; lithium and sodium become not more metal-like but less metal-like as pressure is applied. Ma et al. find that under about fivefold compression (200 GPa pressure), sodium transforms into a dense insulating material that is optically transparent and lacks a metallic sheen. Takahiro Matsuoka and Katsuya Shimizu show that lithium transforms from a metal to a semiconductor at twofold compression (80 GPa). This paper shows that under about 5-fold compression, sodium transforms into an optically transparent phase. Thus, about ten years after the basic effect was first predicted it is now shown that high pressure can turn an archetypal simple metal such as sodium into a dense insulating material with a rather complex structure and lacking a metallic sheen. Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium (Li; refs 1–3) and sodium (Na; refs 4, 5), leading in turn to structurally complex phases6,7,8 and superconductivity with a high critical temperature9,10,11. But the most intriguing prediction—that the seemingly simple metals Li (ref. 1) and Na (ref. 4) will transform under pressure into insulating states, owing to pairing of alkali atoms—has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at ∼200 GPa (corresponding to ∼5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p–d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly." @default.
- W2078177627 created "2016-06-24" @default.
- W2078177627 creator A5000672604 @default.
- W2078177627 creator A5008978196 @default.
- W2078177627 creator A5011903650 @default.
- W2078177627 creator A5015718993 @default.
- W2078177627 creator A5022322569 @default.
- W2078177627 creator A5024418344 @default.
- W2078177627 creator A5027557042 @default.
- W2078177627 creator A5066703017 @default.
- W2078177627 creator A5088817033 @default.
- W2078177627 date "2009-03-01" @default.
- W2078177627 modified "2023-10-06" @default.
- W2078177627 title "Transparent dense sodium" @default.
- W2078177627 cites W1560221858 @default.
- W2078177627 cites W1568243809 @default.
- W2078177627 cites W1970127494 @default.
- W2078177627 cites W1979544533 @default.
- W2078177627 cites W1981368803 @default.
- W2078177627 cites W1986701011 @default.
- W2078177627 cites W1996331882 @default.
- W2078177627 cites W2009526076 @default.
- W2078177627 cites W2016263142 @default.
- W2078177627 cites W2017119638 @default.
- W2078177627 cites W2024330948 @default.
- W2078177627 cites W2027924480 @default.
- W2078177627 cites W2035223648 @default.
- W2078177627 cites W2042539957 @default.
- W2078177627 cites W2042839856 @default.
- W2078177627 cites W2043559842 @default.
- W2078177627 cites W2062292483 @default.
- W2078177627 cites W2072229948 @default.
- W2078177627 cites W2077391932 @default.
- W2078177627 cites W2083222334 @default.
- W2078177627 cites W2086671280 @default.
- W2078177627 cites W2095554303 @default.
- W2078177627 cites W2124820885 @default.
- W2078177627 cites W2144023166 @default.
- W2078177627 cites W2156843963 @default.
- W2078177627 cites W2169454300 @default.
- W2078177627 doi "https://doi.org/10.1038/nature07786" @default.
- W2078177627 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19279632" @default.
- W2078177627 hasPublicationYear "2009" @default.
- W2078177627 type Work @default.
- W2078177627 sameAs 2078177627 @default.
- W2078177627 citedByCount "688" @default.
- W2078177627 countsByYear W20781776272012 @default.
- W2078177627 countsByYear W20781776272013 @default.
- W2078177627 countsByYear W20781776272014 @default.
- W2078177627 countsByYear W20781776272015 @default.
- W2078177627 countsByYear W20781776272016 @default.
- W2078177627 countsByYear W20781776272017 @default.
- W2078177627 countsByYear W20781776272018 @default.
- W2078177627 countsByYear W20781776272019 @default.
- W2078177627 countsByYear W20781776272020 @default.
- W2078177627 countsByYear W20781776272021 @default.
- W2078177627 countsByYear W20781776272022 @default.
- W2078177627 countsByYear W20781776272023 @default.
- W2078177627 crossrefType "journal-article" @default.
- W2078177627 hasAuthorship W2078177627A5000672604 @default.
- W2078177627 hasAuthorship W2078177627A5008978196 @default.
- W2078177627 hasAuthorship W2078177627A5011903650 @default.
- W2078177627 hasAuthorship W2078177627A5015718993 @default.
- W2078177627 hasAuthorship W2078177627A5022322569 @default.
- W2078177627 hasAuthorship W2078177627A5024418344 @default.
- W2078177627 hasAuthorship W2078177627A5027557042 @default.
- W2078177627 hasAuthorship W2078177627A5066703017 @default.
- W2078177627 hasAuthorship W2078177627A5088817033 @default.
- W2078177627 hasBestOaLocation W20781776272 @default.
- W2078177627 hasConcept C121332964 @default.
- W2078177627 hasConcept C134018914 @default.
- W2078177627 hasConcept C147120987 @default.
- W2078177627 hasConcept C159467904 @default.
- W2078177627 hasConcept C159985019 @default.
- W2078177627 hasConcept C168900304 @default.
- W2078177627 hasConcept C178790620 @default.
- W2078177627 hasConcept C180016635 @default.
- W2078177627 hasConcept C184779094 @default.
- W2078177627 hasConcept C185592680 @default.
- W2078177627 hasConcept C191897082 @default.
- W2078177627 hasConcept C192562407 @default.
- W2078177627 hasConcept C198091228 @default.
- W2078177627 hasConcept C2778541603 @default.
- W2078177627 hasConcept C38649801 @default.
- W2078177627 hasConcept C537181965 @default.
- W2078177627 hasConcept C544153396 @default.
- W2078177627 hasConcept C61782718 @default.
- W2078177627 hasConcept C62520636 @default.
- W2078177627 hasConcept C71924100 @default.
- W2078177627 hasConceptScore W2078177627C121332964 @default.
- W2078177627 hasConceptScore W2078177627C134018914 @default.
- W2078177627 hasConceptScore W2078177627C147120987 @default.
- W2078177627 hasConceptScore W2078177627C159467904 @default.
- W2078177627 hasConceptScore W2078177627C159985019 @default.
- W2078177627 hasConceptScore W2078177627C168900304 @default.
- W2078177627 hasConceptScore W2078177627C178790620 @default.
- W2078177627 hasConceptScore W2078177627C180016635 @default.
- W2078177627 hasConceptScore W2078177627C184779094 @default.